Contents
2020
Volume: 1 Issue 1
5 Article(s)

Export citation format
Nanophotonics
Ultrafast direct laser writing of 2D materials for multifunctional photonics devices [Invited] | On the Cover
Tieshan Yang, Han Lin, and Baohua Jia
Recently, fundamental properties and practical applications of two-dimensional (2D) materials have attracted tremendous interest. Micro/nanostructures and functional devices in 2D materials have been fabricated by various methods. Ultrafast direct laser writing (DLW) with the advantages of rich light-matter interactions; unique three-dimensional processing capability; arbitrary-shape design flexibility; and minimized thermal effect, which enables high fabrication accuracy resolution, has been widely applied in the fabrication of 2D materials for multifunctional devices. This timely review summarizes the laser interactions with 2D materials and the advances in diverse functional photonics devices by DLW. The perspectives and challenges in designing and improving laser-fabricated 2D material photonic devices are also discussed.
Review of Optics: a virtual journal
  • Publication Date:
  • Vol.18 Issue, 2 023601 (2020)
Reviews
Terahertz surface plasmonic waves: a review
Xueqian Zhang, Quan Xu, Lingbo Xia, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Jiaguang Han, and Weili Zhang
Terahertz science and technology promise many cutting-edge applications. Terahertz surface plasmonic waves that propagate at metal–dielectric interfaces deliver a potentially effective way to realize integrated terahertz devices and systems. Previous concerns regarding terahertz surface plasmonic waves have been based on their highly delocalized feature. However, recent advances in plasmonics indicate that the confinement of terahertz surface plasmonic waves, as well as their propagating behaviors, can be engineered by designing the surface environments, shapes, structures, materials, etc., enabling a unique and fascinating regime of plasmonic waves. Together with the essential spectral property of terahertz radiation, as well as the increasingly developed materials, microfabrication, and time-domain spectroscopy technologies, devices and systems based on terahertz surface plasmonic waves may pave the way toward highly integrated platforms for multifunctional operation, implementation, and processing of terahertz waves in both fundamental science and practical applications. We present a review on terahertz surface plasmonic waves on various types of supports in a sequence of properties, excitation and detection, and applications. The current research trend and outlook of possible research directions for terahertz surface plasmonic waves are also outlined.
Review of Optics: a virtual journal
  • Publication Date:
  • Vol.2 Issue, 1 014001 (2020)
Roadmap for single-molecule surface-enhanced Raman spectroscopy
Yang Yu, Ting-Hui Xiao, Yunzhao Wu, Wanjun Li, Qing-Guang Zeng, Li Long, and Zhi-Yuan Li

In the near future, single-molecule surface-enhanced Raman spectroscopy (SERS) is expected to expand the family of popular analytical tools for single-molecule characterization. We provide a roadmap for achieving single molecule SERS through different enhancement strategies for diverse applications. We introduce some characteristic features related to single-molecule SERS, such as Raman enhancement factor, intensity fluctuation, and data analysis. We then review recent strategies for enhancing the Raman signal intensities of single molecules, including electromagnetic enhancement, chemical enhancement, and resonance enhancement strategies. To demonstrate the utility of single-molecule SERS in practical applications, we present several examples of its use in various fields, including catalysis, imaging, and nanoelectronics. Finally, we specify current challenges in the development of single-molecule SERS and propose corresponding solutions.

Review of Optics: a virtual journal
  • Publication Date:
  • Vol.2 Issue, 1 014002 (2020)
Single-shot compressed ultrafast photography: a review | On the Cover
Dalong Qi, Shian Zhang, Chengshuai Yang, Yilin He, Fengyan Cao, Jiali Yao, Pengpeng Ding, Liang Gao, Tianqing Jia, Jinyang Liang, Zhenrong Sun, and Lihong V. Wang
Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields.
Review of Optics: a virtual journal
  • Publication Date:
  • Vol.2 Issue, 1 014003 (2020)
Ultrafast Optics
Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect
Tian Jiang, Ke Yin, Cong Wang, Jie You, Hao Ouyang, Runlin Miao, Chenxi Zhang, Ke Wei, Han Li, Haitao Chen, Renyan Zhang, Xin Zheng, Zhongjie Xu, Xiangai Cheng, and Han Zhang
Review of Optics: a virtual journal
  • Publication Date:
  • Vol.8 Issue, 1 01000078 (2020)

About the Cover

Review of Optics: a virtual journal, started in 2019, is a virtual review journal, and it contains high-quality review articles from journals that published by Chinese Laser Press independently or along with its partners. Review of Optics is published quarterly. It aims to provide readers an alternative way to quickly look through high quality review papers. The scope of Review of Optics covers the full area of optics and photonics and relevant interdisciplinary topics, and meanwhile is in accordance with its source journals: Advanced Photonics, Chinese Optics Letters, High Power Laser Science and engineering and Photonics Research.