• Infrared and Laser Engineering
  • Vol. 53, Issue 5, 20240011 (2024)
Yunpeng Wang1, Jing Yan1, and Xiang Hao1,2
Author Affiliations
  • 1College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China
  • 2Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
  • show less
    DOI: 10.3788/IRLA20240011 Cite this Article
    Yunpeng Wang, Jing Yan, Xiang Hao. Application of adaptive optics in super-resolution microscopic imaging techniques (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(5): 20240011 Copy Citation Text show less
    References

    [1] L Schermelleh, A Ferrand, T Huser, et al. Super-resolution microscopy demystified: 1. Nature Cell Biology, 21, 72-84(2019).

    [2] S T Hess, T P K Girirajan, M D Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91, 4258-4272(2006).

    [3] M G L Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82-87(2000).

    [4] S W Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780-782(1994).

    [5] S Liu, P Hoess, J Ries. Super-resolution microscopy for structural cell biology. Annual Review of Biophysics, 51, 301-326(2022).

    [6] K Philipp, F Lemke, S Scholz, et al. Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Scientific Reports, 9, 9532(2019).

    [7] M Schwertner, M J Booth, T Wilson. Characterizing specimen induced aberrations for high NA adaptive optical microscopy. Optics Express, 12, 6540-6552(2004).

    [8] M Schwertner, M J Booth, M A Neil, . et al. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry. Journal of Microscopy, 213, 11-19(2004).

    [9] M J Booth. Adaptive optical microscopy: The ongoing quest for a perfect image. Light: Science & Applications, 3, e165(2014).

    [10] H W Babcock. The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, 65, 229-236(1953).

    [11] V Voleti, K B Patel, W Li, et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nature Methods, 16, 1054-1062(2019).

    [12] B C Platt, R Shack. History and principles of Shack-Hartmann wavefront sensing. Journal of Refractive Surgery, 17, S573-S577(2001).

    [13] L Seifert, H J Tiziani, W Osten. Wavefront reconstruction with the adaptive Shack–Hartmann sensor. Optics Communications, 245, 255-269(2005).

    [14] K M Hampson, R Turcotte, D T Miller, et al. Adaptive optics for high-resolution imaging. Nature Reviews Methods Primers, 1, 1-26(2021).

    [15] X Tao, J Crest, S Kotadia, et al. Live imaging using adaptive optics with fluorescent protein guide-stars. Optics Express, 20, 15969-15982(2012).

    [16] P Yao, R Liu, T Broggini, et al. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing. Nature Protocols, 18, 3732-3766(2023).

    [17] K Wang, D E Milkie, A Saxena, et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nature Methods, 11, 625-628(2014).

    [18] Q Zhang, Q Hu, C Berlage, et al. Adaptive optics for optical microscopy [Invited]. Biomedical Optics Express, 14, 1732-1756(2023).

    [19] M Rueckel, J A Mack-Bucher, W Denk. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proceedings of the National Academy of Sciences, 103, 17137-17142(2006).

    [20] I N Papadopoulos, J-S Jouhanneau, J F A Poulet, et al. Scattering compensation by Focus Scanning Holographic Aberration Probing (F-SHARP): 2. Nature Photonics, 11, 116-123(2017).

    [21] Z Qin, Z She, C Chen, et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nature Biotechnology, 40, 1663-1671(2022).

    [22] M A May, N Barré, K K Kummer, et al. Fast holographic scattering compensation for deep tissue biological imaging. Nature Communications, 12, 4340(2021).

    [23] A Facomprez, E Beaurepaire, D Débarre. Accuracy of correction in modal sensorless adaptive optics. Optics Express, 20, 2598-2612(2012).

    [24] D Débarre, M J Booth, T Wilson. Image based adaptive optics through optimisation of low spatial frequencies. Optics Express, 15, 8176-8190(2007).

    [25] A J Wright, D Burns, B A Patterson, et al. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Microscopy Research and Technique, 67, 36-44(2005).

    [26] M J Booth, M A A Neil, R Juškaitis, et al. Adaptive aberration correction in a confocal microscope. Proceedings of the National Academy of Sciences, 99, 5788-5792(2002).

    [27] J Antonello, A Barbotin, E Z Chong, et al. Multi-scale sensorless adaptive optics: Application to stimulated emission depletion microscopy. Optics Express, 28, 16749-16763(2020).

    [28] Q Hu, J Wang, J Antonello, et al. A universal framework for microscope sensorless adaptive optics: Generalized aberration representations. APL Photonics, 5, 100801(2020).

    [29] N Ji, T R Sato, E Betzig. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proceedings of the National Academy of Sciences, 109, 22-27(2012).

    [30] C Wang, N Ji. Characterization and improvement of three-dimensional imaging performance of GRIN-lens-based two-photon fluorescence endomicroscopes with adaptive optics. Optics Express, 21, 27142-27154(2013).

    [31] C Wang, R Liu, D E Milkie, et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nature Methods, 11, 1037-1040(2014).

    [32] R A Gonsalves. Phase retrieval and diversity in adaptive optics. Optical Engineering, 21, 829-832(1982).

    [33] B M Hanser, M G L Gustafsson, D A Agard, et al. Phase retrieval for high-numerical-aperture optical systems. Optics Letters, 28, 801(2003).

    [34] B M Hanser, M G L Gustafsson, D A Agard. Phase-retrievedpupil functions in wide-field fluorescence microscopy. Journal of Microscopy, 216, 32-48(2004).

    [35] P Kner. Phase diversity for three-dimensional imaging. JOSA A, 30, 1980-1987(2013).

    [36] Y Jin, Y Zhang, L Hu, et al. Machine learning guided rapid focusing with sensor-less aberration corrections. Optics Express, 26, 30162-30171(2018).

    [37] Y Jin, J Chen, C Wu, et al. Wavefront reconstruction based on deep transfer learning for microscopy. Optics Express, 28, 20738-20747(2020).

    [38] M Wang, W Guo, X Yuan. Single-shot wavefront sensing with deep neural networks for free-space optical communications. Optics Express, 29, 3465-3478(2021).

    [39] C Lu, Q Tian, L Zhu, et al. Mitigating the ambiguity problem in the CNN-based wavefront correction. Optics Letters, 47, 3251-3254(2022).

    [40] Q Hu, M Hailstone, J Wang, et al. Universal adaptive optics for microscopy through embedded neural network control. Light: Science & Applications, 12, 270(2023).

    [41] K Wang, L Song, C Wang, et al. On the use of deep learning for phase recovery: 1. Light: Science & Applications, 13, 4(2024).

    [42] J Wang, Y Zhang. Adaptive optics in super-resolution microscopy. Biophysics Reports, 7, 267-279(2021).

    [43] M J Rust, M Bates, X Zhuang. Sub-diffraction-limit imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nature Methods, 3, 793-796(2006).

    [44] E Betzig, G H Patterson, R Sougrat, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [45] M Heilemann, Linde S de, M Schüttpelz, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie International Edition, 47, 6172-6176(2008).

    [46] B Bateman, S Webb, N Schwartz, et al. Characterisation of the effects of optical aberrations in single molecule techniques. Biomedical Optics Express, 7, 1755(2016).

    [47] Izeddin Ignacio, El Beheiry Mohamed, Andilla Jordi, et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Optics Express, 20, 4957-4967(2012).

    [48] Burke D, Kenny F, Patton B, et al. Optimal sensless adaptive optics schemes f superresolution microscopy[C]Imaging Applied Optics, Optica Publishing Group, 2013.

    [49] J Antonello, M Verhaegen, R Fraanje, et al. Semidefinite programming for model-based sensorless adaptive optics. Journal of the Optical Society of America A, 29, 2428(2012).

    [50] D Burke, B Patton, F Huang, et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica, 2, 177-185(2015).

    [51] K F Tehrani, J Xu, Y Zhang, et al. Adaptive Optics Stochastic Optical Reconstruction Microscopy (AO-STORM) using a genetic algorithm. Optics Express, 23, 13677(2015).

    [52] K F Tehrani, Y Zhang, P Shen, et al. Adaptive Optics Stochastic Optical Reconstruction Microscopy (AO-STORM) by particle swarm optimization. Biomedical Optics Express, 8, 5087(2017).

    [53] M J Mlodzianoski, P J Cheng-Hathaway, S M Bemiller, et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections. Nature Methods, 15, 583-586(2018).

    [54] M Siemons, C Hulleman, R Thorsen, et al. High precision wavefront control in point spread function engineering for single emitter localization. Optics Express, 26, 8397(2018).

    [55] S Park, Y Jo, M Kang, et al. Label-free adaptive optics single-molecule localization microscopy for whole zebrafish. Nature Communications, 14, 4185(2023).

    [56] Y Li, Y-L Wu, P Hoess, et al. Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization. Biomedical Optics Express, 10, 2708-2718(2019).

    [57] S Liu, E B Kromann, W D Krueger, et al. Three dimensional single molecule localization using a phase retrieved pupil function. Optics Express, 21, 29462-29487(2013).

    [58] F Xu, D Ma, K P MacPherson, et al. Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval. Nature Methods, 17, 531-540(2020).

    [59] M G L Gustafsson. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences, 102, 13081-13086(2005).

    [60] Zheng W, Wu Y, Winter P, et al. Adaptive optics improves multiphoton superresolution imaging [J]. Nature Methods, 2017, 14(9): 869872.

    [61] R Turcotte, Y Liang, M Tanimoto, et al. Dynamic super-resolution structured illumination imaging in the living brain. Proceedings of the National Academy of Sciences, 116, 9586-9591(2019).

    [62] Z Li, Q Zhang, S-W Chou, et al. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo. Science Advances, 6, 3870(2020).

    [63] D Débarre, E Botcherby, M Booth, et al. Adaptive optics for structured illumination microscopy. Optics Express, 16, 9290-9305(2008).

    [64] M Zurauskas, I Dobbie, R Parton, et al. IsoSense: Frequency enhanced sensorless adaptive optics through structured illumination. Optica, 6, 370(2019).

    [65] B Thomas, A Wolstenholme, S N Chaudhari, et al. Enhanced resolution through thick tissue with structured illumination and adaptive optics. Journal of Biomedical Optics, 20, 026006(2015).

    [66] R Lin, E T Kipreos, J Zhu, et al. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics. Nature Communications, 12, 3148(2021).

    [67] T J Gould, D Burke, J Bewersdorf, et al. Adaptive optics enables 3D STED microscopy in aberrating specimens. Optics Express, 20, 20998-21009(2012).

    [68] T J Gould, E B Kromann, D Burke, et al. Auto-aligning stimulated emission depletion microscope using adaptive optics. Optics Letters, 38, 1860-1862(2013).

    [69] B R Patton, D Burke, D Owald, et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Optics Express, 24, 8862-8876(2016).

    [70] X Hao, E S Allgeyer, D R Lee, et al. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at Sub-50-nm resolution. Nature Methods, 18, 688-693(2021).

    [71] M O Lenz, H G Sinclair, A Savell, et al. 3D stimulated emission depletion microscopy with programmable aberration correction. Journal of Biophotonics, 7, 29-36(2014).

    [72] S Bancelin, L Mercier, E Murana, et al. Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue. Neurophotonics, 8, 035001(2021).

    [73] M G M Velasco, M Zhang, J Antonello, et al. 3D super-resolution deep-tissue imaging in living mice. Optica, 8, 442-450(2021).

    Yunpeng Wang, Jing Yan, Xiang Hao. Application of adaptive optics in super-resolution microscopic imaging techniques (inner cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(5): 20240011
    Download Citation