• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 231406 (2020)
Zeliang Zhang, Haiying Song*, and Shibing Liu*
Author Affiliations
  • Strong-Field and Ultrafast Photonics Laboratory, Key Laboratory of Trans-Scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP57.231406 Cite this Article Set citation alerts
    Zeliang Zhang, Haiying Song, Shibing Liu. Measurement of the Electron Density of Capacitive-Coupled Plasma by Laser Thomson Scattering[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231406 Copy Citation Text show less
    References

    [1] Zang Q, Zhao J Y, Yang L et al. Development of a Thomson scattering diagnostic system on EAST[J]. Plasma Science & Technology, 12, 144-148(2010). http://www.cqvip.com/QK/84262X/20102/33516916.html

    [2] Hatae T, Nagashima A, Yoshida H et al. Design, 34/35, 621-624(1997).

    [3] Hatae T, Nagashima A, Kondoh T et al. YAG laser Thomson scattering diagnostic on the JT-60U[J]. Review of Scientific Instruments, 70, 772-775(1999).

    [4] GerryE T, Rose D J. Plasma diagnostics by Thomson scattering of a laser beam[J]. Journal of Applied Physics, 37, 2715-2724(1966).

    [5] Hopwood J. Review of inductively coupled plasmas for plasma processing[J]. Plasma Sources Science and Technology, 1, 109-116(1992).

    [6] Muraoka K, Uchino K, Yamagata Y et al. Laser Thomson scattering studies of glow discharge plasmas[J]. Plasma Sources Science and Technology, 11, A143-A149(2002).

    [7] Hassaballa S, Tomita K, Kim Y K et al. Laser Thomson scattering measurements of electron density and temperature profiles of a striated plasma in a plasma display panel (PDP)-like discharge[J]. Japanese Journal of Applied Physics, 44, L442-L444(2005).

    [8] Belostotskiy S G, Khandelwal R, Wang Q et al. Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering[J]. Applied Physics Letters, 92, 221507(2008).

    [9] Noguchi M, Hirao T, Shindo M et al. Comparative studies of the laser Thomson scattering and Langmuir probe methods for measurements of negative ion density in a glow discharge plasma[J]. Plasma Sources Science and Technology, 12, 403-406(2003).

    [10] Scannell R, Walsh M J, Carolan P G et al. 79(10): 10E730(2008).

    [11] MoradiZamenjani F, Ali Asgarian M, Mostajaboddavati M et al. Particle-in-cell simulation feasibility test for analysis of non-collective Thomson scattering as a diagnostic method in ITER[J]. Nuclear Engineering and Technology, 52, 568-574(2020).

    [12] Blanchard P, Andrebe Y, Arnichand H et al. Thomson scattering measurements in the divertor region of the TCV Tokamak plasmas[J]. Journal of Instrumentation, 14, C10038(2019).

    [13] Kajita S, Ohshima H, Tanaka H et al. Spatial and temporal measurement of recombining detached plasmas by laser Thomson scattering[J]. Plasma Sources Science and Technology, 28, 105015(2019).

    [14] Davies A S, Haberberger D, Katz J et al. Investigation of picosecond thermodynamics in a laser-produced plasma using Thomson scattering[J]. Plasma Physics and Controlled Fusion, 62, 014012(2020).

    [15] LeeJ H, Kim H J. Improvement of light collection subsystems in the KSTAR Thomson scattering diagnostic system[J]. Journal of Instrumentation, 14, C11015(2019).

    Zeliang Zhang, Haiying Song, Shibing Liu. Measurement of the Electron Density of Capacitive-Coupled Plasma by Laser Thomson Scattering[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231406
    Download Citation