• Opto-Electronic Advances
  • Vol. 4, Issue 8, 200063-1 (2021)
Tifeng Xia, Wenqian Cao, Yuanjing Cui*, Yu Yang, and Guodong Qian
Author Affiliations
  • State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.29026/oea.2021.200063 Cite this Article
    Tifeng Xia, Wenqian Cao, Yuanjing Cui, Yu Yang, Guodong Qian. Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting[J]. Opto-Electronic Advances, 2021, 4(8): 200063-1 Copy Citation Text show less
    References

    [1] W Ren, GG Lin, C Clarke, JJ Zhou, DY Jin. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv Mater, 32, 1901430(2020).

    [2] T Staake, F Thiesse, E Fleisch. The emergence of counterfeit trade: a literature review. Eur J Mark, 43, 320-349(2009).

    [3] RM Li, YT Zhang, J Tan, JX Wan, J Guo et al. Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and raman probes as covert tag for anticounterfeiting applications. ACS Appl Mater Interfaces, 8, 9384-9394(2016).

    [4] EL Prime, DH Solomon. Australia’s plastic banknotes: fighting counterfeit currency. Angew Chem Int Ed, 49, 3726-3736(2010).

    [5] WJ Yao, QY Tian, W Wu. Tunable emissions of upconversion fluorescence for security applications. Adv Opt Mater, 7, 1801171(2019).

    [6] XF Ji, RT Wu, LL Long, XS Ke, CX Guo et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv Mater, 30, 1705480(2018).

    [7] R Arppe, TJ Sørensen. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat Rev Chem, 1, 0031(2017).

    [8] C Zhang, L Yang, J Zhao, BH Liu, MY Han et al. White‐light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power. Angew Chem Int Ed, 54, 11531-11535(2015).

    [9] YQ Lu, JB Zhao, R Zhang, YJ Liu, DM Liu et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics, 8, 32-36(2014).

    [10] GY Chen, J Damasco, HL Qiu, W Shao, TY Ohulchanskyy et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett, 15, 7400-7407(2015).

    [11] JJ Zhou, SH Wen, JY Liao, C Clarke, SA Tawfik et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat Photonics, 12, 154-158(2018).

    [12] JC Zhang, C Pan, YF Zhu, LZ Zhao, HW He et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv Mater, 30, 1804644(2018).

    [13] GR Cai, HL Jiang. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew Chem Int Ed, 56, 563-567(2017).

    [14] ZJ Chen, PH Li, R Anderson, XJ Wang, X Zhang et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 368, 297-303(2020).

    [15] T Islamoglu, ZJ Chen, MC Wasson, CT Buru, KO Kirlikovali et al. Metal-organic frameworks against toxic chemicals. Chem Rev, 120, 8130-8160(2020).

    [16] S Lee, EA Kapustin, OM Yaghi. Coordinative alignment of molecules in chiral metal-organic frameworks. Science, 353, 808-811(2016).

    [17] J Li, XX Wang, GX Zhao, CL Chen, ZF Chai et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev, 47, 2322-2356(2018).

    [18] P Li, NA Vermeulen, CD Malliakas, DA Gómez-Gualdrón, AJ Howarth et al. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science, 356, 624-627(2017).

    [19] B Wang, X Zhang, HL Huang, ZJ Zhang, T Yildirim et al. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res, 14, 507-511(2021).

    [20] BX Yu, G Ye, J Chen, SQ Ma. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment. Environ Pollut, 253, 39-48(2019).

    [21] X Zhang, RB Lin, J Wang, B Wang, B Liang et al. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv Mater, 32, 1907995(2020).

    [22] HY Yuan, JF Tao, NX Li, A Karmakar, CH Tang et al. On‐chip tailorability of capacitive gas sensors integrated with metal-organic framework films. Angew Chem Int Ed, 58, 14089-14094(2019).

    [23] YN Yao, ZH Gao, YC Lv, XQ Lin, YY Liu et al. Heteroepitaxial growth of multiblock Ln-MOF microrods for photonic barcodes. Angew Chem Int Ed, 58, 13803-13807(2019).

    [24] H Kim, S Yang, SR Rao, S Narayanan, EA Kapustin et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356, 430-434(2017).

    [25] HL Nguyen, N Hanikel, SJ Lyle, CH Zhu, DM Proserpio et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc, 142, 2218-2221(2020).

    [26] D Ma, P Li, XY Duan, JZ Li, PP Shao et al. A hydrolytically stable vanadium(IV) metal-organic framework with photocatalytic bacteriostatic activity for autonomous indoor humidity control. Angew Chem Int Ed, 59, 3905-3909(2020).

    [27] NC Burtch, H Jasuja, KS Walton. Water stability and adsorption in metal-organic frameworks. Chem Rev, 114, 10575-10612(2014).

    [28] JN Hao, YS Li. Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: a light-operated dual-mode assay for oxidative DNA damage. Adv Funct Mater, 29, 1903058(2019).

    [29] NS Zhao, LJ Li, XZ Song, M Zhu, ZM Hao et al. Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing. Adv Funct Mater, 25, 1463-1469(2015).

    [30] ZQ Li, GN Wang, YX Ye, B Li, HR Li et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew Chem Int Edit, 58, 18025-18031(2019).

    [31] SAA Razavi, A Morsali. Linker functionalized metal-organic frameworks. Coordin Chem Rev, 388, 213023(2019).

    [32] V Guillerm, ŁJ Weseliński, Y Belmabkhout, AJ Cairns, V D'Elia et al. Discovery and introduction of a (3, 18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat Chem, 6, 673-680(2014).

    [33] DX Xue, Y Belmabkhout, O Shekhah, H Jiang, K Adil et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc, 137, 5034-5040(2015).

    [34] Y Yu, JP Ma, YB Dong. Luminescent humidity sensors based on porous Ln3+-MOFs. CrystEngComm, 14, 7157-7160(2012).

    [35] L Yu, QT Zheng, H Wang, CX Liu, XQ Huang et al. Double-color lanthanide metal-organic framework based logic device and visual ratiometric fluorescence water microsensor for solid pharmaceuticals. Anal Chem, 92, 1402-1408(2020).

    [36] L Li, YL Zhu, XH Zhou, CDS Brites, D Ananias et al. Visible‐light excited luminescent thermometer based on single lanthanide organic frameworks. Adv Funct Mater, 26, 8677-8684(2016).

    [37] J Heine, K Müller-Buschbaum. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem Soc Rev, 42, 9232-9242(2013).

    Tifeng Xia, Wenqian Cao, Yuanjing Cui, Yu Yang, Guodong Qian. Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting[J]. Opto-Electronic Advances, 2021, 4(8): 200063-1
    Download Citation