• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 72601 (2018)
Zhang Ying1, Bai Zhongchen2, Huang Zhaoling2, Zhao Qi3, Peng Man3, and Qin Shuijie2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop55.072601 Cite this Article Set citation alerts
    Zhang Ying, Bai Zhongchen, Huang Zhaoling, Zhao Qi, Peng Man, Qin Shuijie. Influence of Distance Between CdSe Quantum Dot and Gold Nanoparticle on System Fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72601 Copy Citation Text show less
    References

    [1] Lee Y S, Gopi C V V M, Reddy A E, et al. High performance of TiO2/CdS quantum dot sensitized solar cells with a Cu-ZnS passivation layer[J]. New Journal of Chemistry, 2017, 41(5): 1914-1917.

    [2] Husseini H B A, Naimee K A A, Alkhursan A H, et al. External modes in quantum dot light emitting diode with filtered optical feedback[J]. Journal of Applied Physics, 2016, 119(22): 100-107.

    [3] Zhang J, Zhang J, Geng J J, et al. Application of PbS quantum dots in luminescent solar concentrator[J]. Acta Optica Sinica, 2012, 32(1): 0123003.

    [4] Cheng C, Hu N S. Broadband PbSe quantum-dot-doped fiber amplifiers from 1250 nm to 1370 nm[J]. Acta Optica Sinica, 2016, 36(4): 0406002.

    [5] Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes[J]. Analytical Chemistry, 2002, 74(19): 5132-5138.

    [6] Jamieson T, Bakhshi R, Petrova D, et al. Biological applications of quantum dots[J]. Biomaterials, 2007, 28(31): 4717-4732.

    [7] Xia Y S, Song L, Zhu C Q. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dot) assembly[J]. Analytical Chemistry, 2011, 83(4): 1401-1407.

    [8] Geng Y, Wang H L. Reflective fluorescence temperatures sensor based on dual-granularity CdSe/ZnS doped quantum dots thin films[J]. Chinese Journal of Lasers, 2016, 43(5): 0514003.

    [9] Zhang H, Xu T, Li C W, et al. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels[J]. Biosensors & Bioelectronics, 2010, 25(11): 2402-2407.

    [10] Shankar S S, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms[J]. Nature Materials, 2004, 3(7): 482-488.

    [11] Fujita T, Guan P, Mckenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold[J]. Nature Materials, 2012, 11(9): 775-780.

    [12] Chandra D, Jena B K, Raj C R, et al. Functionalized mesoporous cross-linked polymer as efficient host for loading gold nanoparticles and its electrocatalytic behavior for reduction of H2O2[J]. Chemistry of Materials, 2015,19(25): 6290-6296.

    [13] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(5329): 1078-1081.

    [14] Yamazoe S, Naya M, Shiota M, et al. Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite[J]. ACS Nano, 2015, 8(6): 5622-5632.

    [15] Saha K, Agasti S S, Kim C, et al. Gold nanoparticle in chemical and biological sensing[J]. Chemical Reviews, 2012, 112(5): 2739-2779.

    [16] Frster T. Intermolecular energy migration and fluorescence[J]. Annals of Physics, 1948, 2: 55-75.

    [17] Huang C C, Yang Z, Lee K H, et al. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II)[J]. Angewandte Chemie International Edition, 2007, 46(36): 6824-6828.

    [18] Stryer L, Haugland R P. Energy transfer: A spectroscopic ruler[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(2): 719-726.

    [19] Tan H, Ni Z Y, Pi X D, et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.

    [20] Shan G C, Huang W. Theoretical study of single-pair fluorescence resonant energy transfer spectroscopy in microcavity[J]. Acta Optica Sinica, 2009, 29(4): 1049-1053.

    [21] Sapsford K E, Granek J, Deschamps J R, et al. Monitoring botulinum neurotoxin an activity with peptide-functionalized quantum dot resonance energy transfer sensors[J]. ACS Nano, 2011, 5(4): 2687-2699.

    [22] Goryacheva O A, Beloglazova N V, Vostrikova A M, et al. Lanthanide-to-quantum dot Frster resonance energy transfer (FRET): Application for immunoassay[J]. Talanta, 2017, 164: 377-385.

    [23] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nature Materials, 2003, 2(9): 630-638.

    [24] Lunz M, Bradley A L, Chen W Y, et al. Two-dimensional Frster resonant energy transfer in a mixed quantum dot monolayer: Experiment and theory[J]. Journal of Physical Chemistry C, 2015, 113(8): 3084-3088.

    [25] Liang G X, Pan H C, Li Y, et al. Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods[J]. Biosensors & Bioelectronics, 2009, 24(12): 3693-3697.

    [26] Xia L, Kong X G, Liu X M, et al. An upconversion nanoparticle-Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy[J]. Biomaterials, 2014, 35(13): 4146-4156.

    Zhang Ying, Bai Zhongchen, Huang Zhaoling, Zhao Qi, Peng Man, Qin Shuijie. Influence of Distance Between CdSe Quantum Dot and Gold Nanoparticle on System Fluorescence[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72601
    Download Citation