• Journal of Inorganic Materials
  • Vol. 35, Issue 12, 1349 (2020)
hai LIN1, Weitao SU1, Yu ZHU1, Pai PENG1, Miao FENG1、2、*, and Yan YU1、2、*
Author Affiliations
  • 1College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • 2Key Laboratory of Eco-Materials Advanced Technology, Fuzhou University, Fuzhou 350108, China
  • show less
    DOI: 10.15541/jim20200023 Cite this Article
    hai LIN, Weitao SU, Yu ZHU, Pai PENG, Miao FENG, Yan YU. Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion[J]. Journal of Inorganic Materials, 2020, 35(12): 1349 Copy Citation Text show less

    Abstract

    In order to study the influence mechanism of heat treatment and heterostructures on the photoelectrochemical effect of WO3, monoclinic WO3 nanoflowers were synthesized by low-temperature solvothermal method. The active crystal fact, grain size and crystallinity of WO3 were controlled by heat treatment. Furthermore, WO3/CdS/α-S heterojunction was obtained by modified chemical bath deposition, and the concentration effect of its photoelectrochemical performance was studied. The results show that the (200) crystal plane with photoelectrochemical activity is the main exposed crystal plane of WO3, and the proportion of the exposed crystal plane increases with the heat treatment temperature increasing. The WO3 nanoflower treated at 350 ℃ showed the highest photoresponse current. By constructing WO3/CdS/α-S heterojunction, the material's absorption in the visible light region is enhanced, and the overall efficiency of photo-generated carrier separation is improved by sacrificing a small amount of carriers, which promotes the macroelectronic chemical effects of WO3.
    hai LIN, Weitao SU, Yu ZHU, Pai PENG, Miao FENG, Yan YU. Lattice Control of WO3 Nanoflowers by Heat Treatment and Construction of WO3/CdS/α-S Heterojuntion[J]. Journal of Inorganic Materials, 2020, 35(12): 1349
    Download Citation