• Acta Optica Sinica
  • Vol. 44, Issue 1, 0106001 (2024)
Xuping Zhang1、*, Yixin Zhang1, Liang Wang2, Kuanglu Yu3, Bo Liu4, Guolu Yin5, Kun Liu6, Xuan Li7, Shinian Li8, Chuanqi Ding9, Yuquan Tang10, Ying Shang11, Yishou Wang12, Chen Wang11, Feng Wang1, Xinyu Fan13, Qizhen Sun2, Shangran Xie14, Huijuan Wu15, Hao Wu2, Huaping Wang16, and Zhiyong Zhao2
Author Affiliations
  • 1Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing 210023, Jiangsu , China
  • 2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei , China
  • 3Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
  • 4Research Center for Optical Fiber Sensing, Zhejiang Lab , Hangzhou 311100, Zhejiang , China
  • 5Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University,Chongqing 400044, China
  • 6School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 7China Electric Power Research Institute, Beijing 100192, China
  • 8General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039, China
  • 9Optical Science and Technology (Chengdu) Ltd., Chengdu 611731, Sichuan , China
  • 10Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Science, Hefei 230031, Anhui , China
  • 11Qilu University of Technology (Shandong Academy of Sciences), Laser Institute, Shandong Academy of Sciences, Jinan 250104, Shandong , China
  • 12School of Aerospace Engineering, Xiamen University, Xiamen 361005, Fujian , China
  • 13School of Electric Information and Electrical Engineering, State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 14School of Optics and Photonics, MIIT Key Laboratory of Photonics Information Technology, Beijing Institute of Technology, Beijing 100081, China
  • 15Key Laboratory of Fiber Optic Sensing and Communication, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 16College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, Gansu , China
  • show less
    DOI: 10.3788/AOS231473 Cite this Article Set citation alerts
    Xuping Zhang, Yixin Zhang, Liang Wang, Kuanglu Yu, Bo Liu, Guolu Yin, Kun Liu, Xuan Li, Shinian Li, Chuanqi Ding, Yuquan Tang, Ying Shang, Yishou Wang, Chen Wang, Feng Wang, Xinyu Fan, Qizhen Sun, Shangran Xie, Huijuan Wu, Hao Wu, Huaping Wang, Zhiyong Zhao. Current Status and Future of Research and Applications for Distributed Fiber Optic Sensing Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106001 Copy Citation Text show less
    References

    [1] Zhang X P[M]. Fully distributed optical fiber sensing technology(2013).

    [2] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 15, 2112-2115(1976).

    [3] Personick S D. Photon probe-an optical-fiber time-domain reflectometer[J]. Bell System Technical Journal, 56, 355-366(1977).

    [4] Nazarathy M, Newton S A, Giffard R P et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 7, 24-38(1989).

    [5] Jones M D. Using simplex codes to improve OTDR sensitivity[J]. IEEE Photonics Technology Letters, 5, 822-824(1993).

    [6] Sahu P K, Gowre S C, Mahapatra S. Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthonormal sequence[J]. IET Optoelectronics, 2, 128-133(2008).

    [7] Liu J J, Cheng Y X, Liu G Q et al. SNR improving method of OTDR system based on compound C-S code[J]. Optical Communication Technology, 39, 35-37(2015).

    [8] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 20, 1636-1638(2008).

    [9] Wang Z N, Fan M Q, Zhang L et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 23, 15514-15520(2015).

    [10] Anderson D R, Johnson L, Bell F G[M]. Troubleshooting optical-fiber networks: understanding and using your optical time-domain reflectometer(2004).

    [11] Zhang X P, Zhang Y X, Wang F et al. Ultra-long fully distributed optical fiber sensor based on Rayleigh scattering effect[J]. Chinese Journal of Lasers, 43, 0700002(2016).

    [12] Healey P, Malyon D J. OTDR in single-mode fibre at 1.5 μm using heterodyne detection[J]. Electronics Letters, 18, 862-863(1982).

    [13] Healey P. Fading in heterodyne OTDR[J]. Electronics Letters, 20, 30-32(1984).

    [14] Healey P. Fading rates in coherent OTDR[J]. Electronics Letters, 20, 443-444(1984).

    [15] King J, Smith D, Richards K et al. Development of a coherent OTDR instrument[J]. Journal of Lightwave Technology, 5, 616-624(1987).

    [16] Koyamada Y, Nakamoto H. High performance single mode OTDR using coherent detection and fibre amplifiers[J]. Electronics Letters, 26, 573-575(1990).

    [17] Izumita H, Koyamada Y, Furukawa S et al. The performance limit of coherent OTDR enhanced with optical fiber amplifiers due to optical nonlinear phenomena[J]. Journal of Lightwave Technology, 12, 1230-1238(1994).

    [18] Sumida M. OTDR performance enhancement using a quaternary FSK modulated probe and coherent detection[J]. IEEE Photonics Technology Letters, 7, 336-338(1995).

    [19] Sumida M. Optical time domain reflectometry using an M-ary FSK probe and coherent detection[J]. Journal of Lightwave Technology, 14, 2483-2491(1996).

    [20] Iida H, Koshikiya Y, Ito F et al. High-sensitivity coherent optical time domain reflectometry employing frequency-division multiplexing[J]. Journal of Lightwave Technology, 30, 1121-1126(2012).

    [21] Shimizu K, Horiguchi T, Koyamada Y. Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components[J]. Journal of Lightwave Technology, 10, 982-987(1992).

    [22] Izumita H, Koyamada Y, Furukawa S et al. Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping[J]. Journal of Lightwave Technology, 15, 267-278(1997).

    [23] Lu L D, Song Y J, Zhang X P et al. Frequency division multiplexing OTDR with fast signal processing[J]. Optics & Laser Technology, 44, 2206-2209(2012).

    [24] Zhang X P, Song Y J, Lu L D. Time division multiplexing optical time domain reflectometry based on dual frequency probe[J]. IEEE Photonics Technology Letters, 24, 2005-2008(2012).

    [25] Chen M M, Song Y J, Zhang X P. Transient effect to small duty-cycle pulse in cascaded erbium-doped fiber amplifier system[J]. Optical Engineering, 52, 025006(2013).

    [26] Zhang X P, Chen X H, Liang L et al. Enhanced C-OTDR-based online monitoring scheme for long-distance submarine cables[J]. Acta Optica Sinica, 41, 1306001(2021).

    [27] Zhang X P, Ding Z W, Hong R et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 41, 0106004(2021).

    [28] Zhang C, Zou N M, Song J Y et al. Digital signal processing and application of Φ‑OTDR system[J]. Opto-Electronic Engineering, 50, 0220088(2023).

    [29] Taylor H F, Lee C. Apparatus and method for fiber optic intrusion sensing[P].

    [30] Rao Y J, Ran Z L, Xie K L. A method for improving the performance of distributed sensing systems using subcarrier technology[P].

    [31] Spross R L, Rodney P F, Skinner N G. Apparatus and method for detecting pressure signals[P].

    [32] Pan Z Q, Liang K Z, Ye Q et al. Phase-sensitive OTDR system based on digital coherent detection[J]. Proceedings of SPIE, 8311, 83110S(2011).

    [33] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 24, 085204(2013).

    [34] Fang G S, Xu T W, Feng S W et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 33, 2811-2816(2015).

    [35] Wang Z N, Zhang L, Wang S et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 24, 853-858(2016).

    [36] Shan Y Y, Ji W B, Wang Q et al. Performance optimization for phase-sensitive OTDR sensing system based on multi-spatial resolution analysis[J]. Sensors, 19, 83(2018).

    [37] Zabihi M, Chen Y S, Zhou T et al. Continuous fading suppression method for Φ‑OTDR systems using optimum tracking over multiple probe frequencies[J]. Journal of Lightwave Technology, 37, 3602-3610(2019).

    [38] Jiang J L, Wang Z N, Wang Z T et al. Continuous chirped-wave phase-sensitive optical time domain reflectometry[J]. Optics Letters, 46, 685-688(2021).

    [39] Zhang Y X, Liu J X, Xiong F et al. A space-division multiplexing method for fading noise suppression in the Φ‑OTDR system[J]. Sensors, 21, 1694(2021).

    [40] Zhu F, Zhang Y X, Xia L et al. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array[J]. Journal of Lightwave Technology, 33, 4775-4780(2015).

    [41] Wang C, Shang Y, Liu X H et al. Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings[J]. Optics Express, 23, 29038-29046(2015).

    [42] Ai F, Sun Q Z, Zhang W et al. Wideband fully-distributed vibration sensing by using UWFBG based coherent OTDR[C], W2A.19(2017).

    [43] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers[J]. IEEE Photonics Technology Letters, 1, 107-108(1989).

    [44] Kurashima T, Horiguchi T, Izumita H et al. Brillouin optical-fiber time domain reflectometry[J]. IEICE Transactions on Communications, E76-B, 382-390(1993).

    [45] Kishida K, Li C H, Nishiguchi K. Pulse pre-pump method for cm-order spatial resolution of BOTDA[J]. Proceedings of SPIE, 5855, 559-562(2005).

    [46] Nishiguchi K, Li C H, Guzik A et al. Synthetic spectrum approach for Brillouin optical time-domain reflectometry[J]. Sensors, 14, 4731-4754(2014).

    [47] Li W H, Bao X Y, Li Y et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 16, 21616-21625(2008).

    [48] Cho Y T, Alahbabi M, Gunning M J et al. 50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification[J]. Optics Letters, 28, 1651-1653(2003).

    [49] Jia X H, Rao Y J, Wang Z N et al. 142.2 km BOTDA based on ultra-long fiber laser with a ring cavity[J]. Proceedings of SPIE, 8924, 89241A(2013).

    [50] Fu Y, Zhu R C, Han B et al. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification[J]. Journal of Lightwave Technology, 37, 4680-4686(2019).

    [51] Urricelqui J, Sagues M, Loayssa A. Brillouin optical time domain analysis sensor assisted by Brillouin distributed amplification of pump pulses[J]. Optics Express, 23, 30448-30458(2015).

    [52] Soto M A, Bolognini G, Di Pasquale F et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 35, 259-261(2010).

    [53] Sun X Z, Yang Z S, Hong X B et al. Genetic-optimised aperiodic code for distributed optical fibre sensors[J]. Nature Communications, 11, 5774(2020).

    [54] Zhou Y, Yan L S, Liu C et al. Hybrid aperiodic coding for SNR improvement in a BOTDA fiber sensor[J]. Optics Express, 29, 33926-33936(2021).

    [55] Wang Q L, Bai Q, Liang C S et al. Random coding method for SNR enhancement of BOTDR[J]. Optics Express, 30, 11604-11618(2022).

    [56] Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 7, 10870(2016).

    [57] Wu H, Wang L, Zhao Z Y et al. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques[J]. Optics Express, 26, 5126-5139(2018).

    [58] Azad A K, Wang L, Guo N et al. Signal processing using artificial neural network for BOTDA sensor system[J]. Optics Express, 24, 6769-6782(2016).

    [59] Geng J H, Staines S, Blake M et al. Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering[J]. Applied Optics, 46, 5928-5932(2007).

    [60] Wang F, Zhu C H, Cao C Q et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 25, 3504-3513(2017).

    [61] Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 34, 2613-2615(2009).

    [62] Yang G Y, Fan X Y, Wang B et al. Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape[J]. Optics Express, 26, 32599-32607(2018).

    [63] Zheng H, Feng D Q, Zhang J D et al. Distributed vibration measurement based on a coherent multi-slope-assisted BOTDA with a large dynamic range[J]. Optics Letters, 44, 1245-1248(2019).

    [64] Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 20, 8584-8591(2012).

    [65] Wang B Z, Hua Z J, Pang C et al. Fast Brillouin optical time-domain reflectometry based on the frequency-agile technique[J]. Journal of Lightwave Technology, 38, 946-952(2020).

    [66] Voskoboinik A, Wang J, Shamee B et al. SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation[J]. Journal of Lightwave Technology, 29, 1729-1735(2011).

    [67] Jin C, Guo N, Feng Y H et al. Scanning-free BOTDA based on ultra-fine digital optical frequency comb[J]. Optics Express, 23, 5277-5284(2015).

    [68] Fang J, Xu P B, Dong Y K et al. Single-shot distributed Brillouin optical time domain analyzer[J]. Optics Express, 25, 15188-15198(2017).

    [69] Li Z L, Yan L S, Zhang X P et al. Temperature and strain discrimination in BOTDA fiber sensor by utilizing dispersion compensating fiber[J]. IEEE Sensors Journal, 18, 7100-7105(2018).

    [70] Li A, Wang Y F, Fang J et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination[J]. Optics Letters, 40, 1488-1491(2015).

    [71] Mizuno Y, Hayashi N, Tanaka H et al. Brillouin scattering in multi-core optical fibers for sensing applications[J]. Scientific Reports, 5, 11388(2015).

    [72] Yang G J, Zeng K Y, Wang L et al. Integrated denoising and extraction of both temperature and strain based on a single CNN framework for a BOTDA sensing system[J]. Optics Express, 30, 34453-34467(2022).

    [73] Dakin J P, Pratt D J, Bibby G W et al. Temperature distribution measurement using Raman ratio thermometry[J]. Proceedings of SPIE, 0566, 249-256(1986).

    [74] Hwang D, Yoon D J, Kwon I B et al. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering[J]. Optics Express, 18, 9747-9754(2010).

    [75] Soto M A, Signorini A, Nannipieri T et al. High-performance raman-based distributed fiber-optic sensing under a loop scheme using anti-Stokes light only[J]. IEEE Photonics Technology Letters, 23, 534-536(2011).

    [76] Suh K, Lee C, Sanders M et al. Active plug and play distributed Raman temperature sensing[J]. Proceedings of SPIE, 7004, 700435(2008).

    [77] Ososkov Y Z, Chernutsky A O, Dvoretskiy D A et al. Fiber optic Raman distributed temperature sensor based on an ultrashort pulse mode-locked fiber laser[J]. Optics and Spectroscopy, 127, 664-668(2019).

    [78] Tanner M G, Dyer S D, Baek B et al. High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors[J]. Applied Physics Letters, 99, 201110(2011).

    [79] Li J, Wang C Y, Cao K Y et al. Breakthrough the physical barrier on spatial resolution in Raman distributed fiber sensing using chaotic correlation demodulation[J]. APL Photonics, 8, 076105(2023).

    [80] Park J, Bolognini G, Lee D et al. Raman-based distributed temperature sensor with simplex coding and link optimization[J]. IEEE Photonics Technology Letters, 18, 1879-1881(2006).

    [81] Wang M, Wu H, Tang M et al. Few-mode fiber based Raman distributed temperature sensing[J]. Optics Express, 25, 4907-4916(2017).

    [82] Wu H, Du H Z, Zhao C et al. 24 km high-performance Raman distributed temperature sensing using low water peak fiber and optimized denoising neural network[J]. Sensors, 22, 2139(2022).

    [83] Liu X, Jie R M, Bera S et al. High-speed and high-resolution YAG fiber based distributed high temperature sensing system empowered by a 2D image restoration algorithm[J]. Optics Express, 31, 6170-6183(2023).

    [84] Lee D, Yoon H, Kim N Y et al. Analysis and experimental demonstration of simplex coding technique for SNR enhancement of OTDR[C], 118-122(2004).

    [85] Dai G Y, Fan X Y, He Z Y. A long-range fiber-optic Raman distributed temperature sensor based on dual-source scheme and RZ simplex coding[C](2018).

    [86] Datta A, Srimal V, Srinivasan B. Performance enhancement of Raman optical time domain reflectometer using Golay codes[J]. Proceedings of SPIE, 8173, 81731R(2011).

    [87] Soto M A, Nannipieri T, Signorini A et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters, 36, 2557-2559(2011).

    [88] Hou S Z, Jian Y H, Chen Y et al. Signal processing of single-mode fiber sensor system based on Raman scattering[C], 176-181(2010).

    [89] Li J, Li Y T, Zhang M J et al. Performance improvement of Raman distributed temperature system by using noise suppression[J]. Photonic Sensors, 8, 103-113(2018).

    [90] Saxena M K, Raju S D V S J, Arya R et al. Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor[J]. IEEE Sensors Journal, 16, 1243-1252(2016).

    [91] Wang H H, Wang X, Cheng Y et al. Research on noise reduction method of RDTS using D-SVD[J]. Optical Fiber Technology, 48, 151-158(2019).

    [92] Malakzadeh A, Didar M, Mansoursamaei M. SNR enhancement of a Raman distributed temperature sensor using partial window-based non local means method[J]. Optical and Quantum Electronics, 53, 147(2021).

    [93] Zhang Z S, Wu H, Zhao C et al. High-performance Raman distributed temperature sensing powered by deep learning[J]. Journal of Lightwave Technology, 39, 654-659(2021).

    [94] Wang H H, Wang Y H, Wang X et al. A novel deep-learning model for RDTS signal denoising based on down-sampling and convolutional neural network[J]. Journal of Lightwave Technology, 40, 3647-3653(2022).

    [95] Liu H L, Zhuang S L, Zhang Z X et al. The optimization of the spatial resolution of a 30-km distributed optical fiber temperature sensor[J]. Proceedings of SPIE, 5634, 225-231(2005).

    [96] Bazzo J P, Pipa D R, Martelli C et al. Improving spatial resolution of Raman DTS using total variation deconvolution[J]. IEEE Sensors Journal, 16, 4425-4430(2016).

    [97] Zhu W H, Wu H T, Chen W X et al. Submetric spatial resolution ROTDR temperature sensor assisted by Wiener deconvolution[J]. Sensors, 22, 9942(2022).

    [98] Silva L C B D, Aching Samatelo J L, Vieira Segatto M E et al. NARX neural network model for strong resolution improvement in a distributed temperature sensor[J]. Applied Optics, 57, 5859-5864(2018).

    [99] Wu H, Zhao C, Tang M. Super spatial resolution Raman distributed temperature sensing via deep learning[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 5600108(2022).

    [100] Datta A, Raj V, Sankar V et al. Measurement accuracy enhancement with multi-event detection using the deep learning approach in Raman distributed temperature sensors[J]. Optics Express, 29, 26745-26764(2021).

    [101] Saxena M K, Raju S D V S J, Arya R et al. Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals[J]. Optics & Laser Technology, 65, 14-24(2015).

    [102] Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letters, 39, 693-695(1981).

    [103] Luo M M, Liu J F, Tang C J et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express, 27, 35823-35829(2019).

    [104] von der Weid J P, Passy R, Mussi G et al. On the characterization of optical fiber network components with optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 15, 1131-1141(1997).

    [105] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993).

    [106] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation[J]. Applied Optics, 46, 2394-2400(2007).

    [107] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 6801408(2014).

    [108] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method[J]. Optics Letters, 32, 3227-3229(2007).

    [109] Ding Z Y, Yao X S, Liu T G et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 21, 3826-3834(2013).

    [110] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 44, 7630-7634(2005).

    [111] Ding Z Y, Liu T G, Meng Z et al. Note: improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform[J]. The Review of Scientific Instruments, 83, 066110(2012).

    [112] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. Journal of Lightwave Technology, 30, 1015-1024(2012).

    [113] Du Y, Liu T G, Ding Z Y et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 6, 7902811(2014).

    [114] Zou C, Lin C F, Mou T L et al. Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method[J]. Optics Letters, 47, 5373-5376(2022).

    [115] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).

    [116] Li J, Gan J L, Zhang Z S et al. High spatial resolution distributed fiber strain sensor based on phase-OFDR[J]. Optics Express, 25, 27913-27922(2017).

    [117] Yin G L, Zhu Z H, Liu M et al. Optical frequency domain reflectometry based on multilayer perceptron[J]. Sensors, 23, 3165(2023).

    [118] Shao C, Yin G L, Lv L et al. OFDR with local spectrum matching method for optical fiber shape sensing[J]. Applied Physics Express, 12, 082010(2019).

    [119] Feng K P, Cui J W, Jiang D et al. Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum[J]. Optics Letters, 43, 3293-3296(2018).

    [120] Wang C H, Liu K, Ding Z Y et al. High sensitivity distributed static strain sensing based on differential relative phase in optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 38, 5825-5836(2020).

    [121] Liu K J, Yin G L, Zhang Z H et al. High-resolution and high-precision φ-OFDR strain sensing scheme based on adaptive phase unwrapping and wavelet packet denoising[EB/OL]. https://ieeexplore.ieee.org/abstract/document/10268022

    [122] Guo Z, Yan J Z, Han G C et al. High-resolution φ-OFDR using phase unwrap and nonlinearity suppression[J]. Journal of Lightwave Technology, 41, 2885-2891(2023).

    [123] Meng Y J, Fu C L, Chen L et al. Submillimeter-spatial-resolution φ‑OFDR strain sensor using femtosecond laser induced permanent scatters[J]. Optics Letters, 47, 6289-6292(2022).

    [124] Feng W, Wang M F, Jia H L et al. High precision phase-OFDR scheme based on fading noise suppression[J]. Journal of Lightwave Technology, 40, 900-908(2022).

    [125] Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 26, 3287-3294(2008).

    [126] Tsuji K, Shimizu K, Horiguchi T et al. Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator[J]. IEEE Photonics Technology Letters, 7, 804-806(1995).

    [127] Geng J H, Spiegelberg C, Jiang S B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry[J]. IEEE Photonics Technology Letters, 17, 1827-1829(2005).

    [128] Qin J, Zhang L, Xie W L et al. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source[J]. Optics Express, 27, 19359-19368(2019).

    [129] Ding Z Y, Yao X S, Liu T G et al. Long measurement range OFDR beyond laser coherence length[J]. IEEE Photonics Technology Letters, 25, 202-205(2013).

    [130] Wang B, Fan X Y, Wang S et al. Laser phase noise compensation in long-range OFDR by using an optical fiber delay loop[J]. Optics Communications, 365, 220-224(2016).

    [131] Li P F, Fu C L, Du B et al. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR[J]. Journal of Lightwave Technology, 39, 6334-6339(2021).

    [132] Wang M F, Feng W, Xie K et al. Wide measurement range distributed strain sensing with phase-accumulation optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 40, 5307-5315(2022).

    [133] Jones J T, Sweeney D C, Birri A et al. Calibration of distributed temperature sensors using commercially available SMF-28 optical fiber from 22 ℃ to 1000 ℃[J]. IEEE Sensors Journal, 22, 4144-4151(2022).

    [134] Cui J W, Zhao S Y, Yang D et al. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems[J]. Applied Optics, 57, 1424-1431(2018).

    [135] Zhao S Y, Cui J W, Wu Z J et al. Accuracy improvement in OFDR-based distributed sensing system by image processing[J]. Optics and Lasers in Engineering, 124, 105824(2020).

    [136] Qu S, Qin Z G, Xu Y P et al. High spatial resolution investigation of OFDR based on image denoising methods[J]. IEEE Sensors Journal, 21, 18871-18876(2021).

    [137] Pan M, Hua P D, Ding Z Y et al. Long distance distributed strain sensing in OFDR by BM3D-SAPCA image denoising[J]. Journal of Lightwave Technology, 40, 7952-7960(2022).

    [138] Zhao S Y, Cui J W, Suo L J et al. Performance investigation of OFDR sensing system with a wide strain measurement range[J]. Journal of Lightwave Technology, 37, 3721-3727(2019).

    [139] Leviatan E, Eyal A. High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR)[J]. Optics Express, 23, 33318-33334(2015).

    [140] Ding Z Y, Yao X S, Liu T G et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 20, 28319-28329(2012).

    [141] Zhou D P, Qin Z G, Li W H et al. Distributed vibration sensing with time-resolved optical frequency-domain reflectometry[J]. Optics Express, 20, 13138-13145(2012).

    [142] Qu S, Qin Z G, Xu Y P et al. Distributed sparse signal sensing based on compressive sensing OFDR[J]. Optics Letters, 45, 3288-3291(2020).

    [143] Wang S, Fan X Y, Liu Q W et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015).

    [144] Qu S, Qin Z G, Xu Y P et al. Improvement of strain measurement range via image processing methods in OFDR system[J]. Journal of Lightwave Technology, 39, 6340-6347(2021).

    [145] Wang M H, Zhao K H, Wu J Y et al. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications[J]. International Journal of Extreme Manufacturing, 3, 025401(2021).

    [146] Bulot P, Bernard R, Cieslikiewicz-Bouet M et al. Performance study of a zirconia-doped fiber for distributed temperature sensing by OFDR at 800 ℃[J]. Sensors, 21, 3788(2021).

    [147] Liu K, Jin X B, Jiang J F et al. Interferometer-based distributed optical fiber sensors in long-distance vibration detection: a review[J]. IEEE Sensors Journal, 22, 21428-21444(2022).

    [148] Hong X B, Wu J, Zuo C et al. Dual Michelson interferometers for distributed vibration detection[J]. Applied Optics, 50, 4333-4338(2011).

    [149] Weir K, Boyle W J O, Meggit B T et al. A novel adaptation of the Michelson interferometer for the measurement of vibration[J]. Journal of Lightwave Technology, 10, 700-703(1992).

    [150] Ferrari J A, García P. Optical-fiber vibration sensor using step interferometry[J]. Applied Optics, 35, 5667-5669(1996).

    [151] Chojnacki M, Szustakowski M, Zyczkowski M. Unbalanced Michelson’s interferometer as a fiber optic distributed sensor of external signals[J]. Proceedings of SPIE, 4535, 205-212(2001).

    [152] Xie S R, Zou Q L, Wang L W et al. Positioning error prediction theory for dual Mach-Zehnder interferometric vibration sensor[J]. Journal of Lightwave Technology, 29, 362-368(2011).

    [153] Pan L, Liu K, Jiang J F et al. An improved polarization compensation method for interferometric fiber-optic intrusion sensors[J]. IEEE Photonics Technology Letters, 29, 834-837(2017).

    [154] Liu K, Ma P F, An J C et al. Endpoint detection of distributed fiber sensing systems based on STFT algorithm[J]. Optics & Laser Technology, 114, 122-126(2019).

    [155] Huang Y L, Liu K, Sun Z S et al. A modulated positioning scheme for asymmetric vibration sensor using high-frequency carrier[J]. Optics and Lasers in Engineering, 160, 107302(2023).

    [156] Yang W C, Qin Z G, Liu Z J et al. A Hilbert-Huang transform method for vibration localization based on a dual Mach-Zehnder distributed optical fiber sensor[J]. Chinese Optics, 14, 1410-1416(2021).

    [157] Liu K, Sun Z S, Jiang J F et al. A combined events recognition scheme using hybrid features in distributed optical fiber vibration sensing system[J]. IEEE Access, 7, 105609-105616(2019).

    [158] Huang S C, Lin W W, Tsai M T et al. Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks[J]. Sensors and Actuators A: Physical, 135, 570-579(2007).

    [159] Wang H, Sun Q Z, Li X L et al. Improved location algorithm for multiple intrusions in distributed Sagnac fiber sensing system[J]. Optics Express, 22, 7587-7597(2014).

    [160] Wu J Y, Zhuo R S, Wan S P et al. Intrusion location technology of Sagnac distributed fiber optical sensing system based on deep learning[J]. IEEE Sensors Journal, 21, 13327-13334(2021).

    [161] Huang J W, Chen Y C, Xiao Q et al. A novel Sagnac distributed optical fiber vibration sensor based on time delay estimation algorithm[J]. Proceedings of SPIE, 11607, 1160705(2021).

    [162] Nishimoto T, Miyahara T, Takehana H et al. Development of 66 kV XLPE submarine cable using optical fiber as a mechanical-damage-detection-sensor[J]. IEEE Transactions on Power Delivery, 10, 1711-1717(1995).

    [163] Chen X H, Zou N M, Liang L et al. Submarine cable monitoring system based on enhanced COTDR with simultaneous loss measurement and vibration monitoring ability[J]. Optics Express, 29, 13115-13128(2021).

    [164] Toge K, Iida H, Ito F. Over 10,000-km recirculating measurement with frequency-coded coherent OTDR[C], 380-382(2014).

    [165] Dakin J P, Pratt D J, Bibby G W et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics Letters, 21, 569-570(1985).

    [166] Tayama H, Fukuda O, Yamamoto K et al. 6.6 kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor[J]. IEEE Transactions on Power Delivery, 10, 1718-1723(1995).

    [167] Hara T, Terashima K, Takashima H et al. Development of long range optical fiber sensors for composite submarine power cable maintenance[J]. IEEE Transactions on Power Delivery, 14, 23-30(1999).

    [168] Niklès M, Thévenaz L, Salina P et al. Local analysis of stimulated Brillouin interaction in installed fiber optics cables[J]. NIST Special Publication, 905, 111-114(1996).

    [169] Niklès M, Thévenaz L, Fellay A et al. A novel surveillance system for installed fiber optics cables using stimulated Brillouin interaction[EB/OL]. https://infoscience.epfl.ch/record/213602

    [170] Dong Y M. Research on Raman scattering distributed fiber optic sensing technology and its applications[D](2007).

    [171] Lü A Q, Li Y Q, Li J et al. Strain and temperature monitoring of 110 kV optical fiber composite submarine power cable based on Brillouin optical time domain reflectometer[J]. High Voltage Engineering, 40, 533-539(2014).

    [172] Zhang C S, Guo X M, Liu L C et al. Study on integrated online monitoring system of HVDC submarine cable[J]. Electrical Measurement & Instrumentation, 53, 27-33(2016).

    [173] Dong X H. Research on the submarine optical cable disturbance monitoring system based on φ-OTDR technology[J]. Optical Fiber & Electric Cable and Their Applications, 32-33, 38(2016).

    [174] Zhu F J. Research on monitoring technology of submarine cable operation state[D](2017).

    [175] Lü A Q, Li J. On-line monitoring system of 35 kV 3-core submarine power cable based on φ‑OTDR[J]. Sensors and Actuators A: Physical, 273, 134-139(2018).

    [176] Li S Q, Wu X Z, Yu B. Application research of φ-OTDR in submarine optical cable disturbance monitoring[J]. Optical Fiber & Electric Cable and Their Applications, 31-33, 40(2018).

    [177] Masoudi A, Pilgrim J A, Newson T P et al. Subsea cable condition monitoring with distributed optical fiber vibration sensor[J]. Journal of Lightwave Technology, 37, 1352-1358(2019).

    [178] Shan Y Y. Research on key technologies of distributed optical fiber vibration sensing system based on φ-OTDR[D](2019).

    [179] Tong J, Yang D L, Gao Q et al. Research on Raman-OTDR sensing based Optical Phase Conductor (OPPC) temperature monitoring and the section temperature field[J]. Proceedings of SPIE, 9044, 904405(2013).

    [180] Sun J X, Zhang Z G, Li Y M et al. Distributed transmission line ice-coating recognition system based on BOTDR temperature monitoring[J]. Journal of Lightwave Technology, 39, 3967-3973(2021).

    [181] Chai Q, Luo Y, Ren J et al. Review on fiber-optic sensing in health monitoring of power grids[J]. Optical Engineering, 58, 072007(2019).

    [182] Li C B, Yang Z, Huang C L. Application of optical fiber Brillouin sensor for power transmission lines icing monitoring[J]. Telecommunications for Electric Power System, 30, 37-41(2009).

    [183] Zhang X P, Wu J L, Shan Y Y et al. On-line monitoring of power transmission lines in smart grid based on distributed optical fiber sensing technology[J]. Optoelectronic Technology, 37, 221-229(2017).

    [184] Praveena S P, Vennila L et al. Investigation of passive optical network based on QoS issues in wireless fibre to the home architecture for fault identification and detection[J]. Wireless Personal Communications, 96, 961-976(2017).

    [185] Wu N, Wang H T, Zhang Z F et al. Research of transmission line icing wide-area monitoring based on OPGW[J]. Electric Power, 50, 65-70(2017).

    [186] Chen H, Xu Y, Qian S et al. Distributed fiber-optic ultrasonic sensor applied in detection of discharging fault of power cable joint[J]. Acta Optica Sinica, 41, 0306001(2021).

    [187] Ding Z W, Zhang X P, Zou N M et al. Phi-OTDR based on-line monitoring of overhead power transmission line[J]. Journal of Lightwave Technology, 39, 5163-5169(2021).

    [188] Li H, Wang F, Zhou X et al. Monitoring of ice coating thickness of tight-buffered OPGW based on Brillouin optical time domain reflectometer[J]. Acta Photonica Sinica, 50, 1106001(2021).

    [190] Xie H P, Zhou H W, Xue D J et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 37, 535-542(2012).

    [191] Habel W R, Krebber K. Fiber-optic sensor applications in civil and geotechnical engineering[J]. Photonic Sensors, 1, 268-280(2011).

    [192] Yang S Q, Chen M, Jing H W et al. A case study on large deformation failure mechanism of deep soft rock roadway in Xin'An coal mine, China[J]. Engineering Geology, 217, 89-101(2017).

    [193] Shi B, Zhang D, Zhu H H[M]. Distributed fiber optic sensing for geoengineering monitoring(2019).

    [194] Shi B, Gu K, Wei G Q et al. Full section monitoring of land subsidence borehole using distributed fiber optic sensing techniques[J]. Journal of Engineering Geology, 26, 356-364(2018).

    [195] Chai J, Du W G, Yuan Q et al. Analysis of test method for physical model test of mining based on optical fiber sensing technology detection[J]. Optical Fiber Technology, 48, 84-94(2019).

    [196] Chai J, Du W G. Experimental study on the application of BOTDA in the overlying strata deformation monitoring induced by coal mining[J]. Journal of Sensors, 2019, 1-9(2019).

    [197] Li S N, Zhang X P, Song H et al. Distributed optical fiber sensing technology and its application in coal mine safety production[J]. Journal of Applied Sciences, 38, 215-225(2020).

    [198] Liu Z, Gao G, Xu F et al[M]. Optical fiber sensing technology in deformation monitoring shaft of Jinchuan Mine(2011).

    [199] Piao C D, Yuan J, Shi B et al. Application of distributed optical fiber sensing technology in the anomaly detection of shaft lining in grouting[J]. Journal of Sensors, 2015, 1-8(2015).

    [200] Hou G Y, Xie B B, Jiang Y S et al. Theoretical and experimental study of the relationship between optical fiber strain and settlement of roof based on BOTDR technology[J]. Rock and Soil Mechanics, 38, 1298-1304(2017).

    [201] Zhang P S, Zhang D, Sun B Y et al. Optical fiber monitoring technology for evolution characteristic of rock stratum deformation and failure in space of mining field[J]. Journal of Engineering Geology, 27, 260-266(2019).

    [202] Zhang X P, Zheng Y Y, Zhang C et al. A fading tolerant phase-sensitive optical time domain reflectometry based on phasing-locking structure[J]. Electronics, 10, 535(2021).

    [203] Yuan L, Zhang P S. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society, 45, 2346-2356(2020).

    [204] Gou L, Zhang S H, Yu G et al. Optical fiber geophysics: development status and future prospects[J]. Geophysical Prospecting for Petroleum, 61, 15-31(2022).

    [205] Hao X Z, Zhang H Q, Wei C L et al. Sea trial for fiber-optic hydrophone array used in marine geophysical exploration[J]. Journal of Tropical Oceanography, 37, 93-98(2018).

    [206] Zhou X H, Chen W, Yang J F et al. Application review of DAS technology in oil and gas geophysics[J]. Progress in Geophysics, 36, 338-350(2021).

    [207] Yu G, Xiong J L, Wu J J et al. Enhanced surface seismic data processing using simultaneous acquired DAS-VSP data[J]. First Break, 38, 29-36(2020).

    [208] Ishii H, Kawamura K, Ono T et al. A fire detection system using optical fibres for utility tunnels[J]. Fire Safety Journal, 29, 87-98(1997).

    [209] Yan B Q, Li J, Zhang M J et al. Raman distributed temperature sensor with optical dynamic difference compensation and visual localization technology for tunnel fire detection[J]. Sensors, 19, 2320(2019).

    [210] Wang X, Shi B, Wei G Q et al. Monitoring the behavior of segment joints in a shield tunnel using distributed fiber optic sensors[J]. Structural Control and Health Monitoring, 25, e2056(2018).

    [211] Chen G F, Cai D S, Liu J F et al. Discussion on a new monitoring technology of railway subgrade settlement[J]. Railway Engineering, 51, 90-92(2011).

    [212] Milne D, Masoudi A, Ferro E et al. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing[J]. Mechanical Systems and Signal Processing, 142, 106769(2020).

    [213] Hu Z C. Application of φ-OTDR sensing technology in railway safety monitoring[D](2021).

    [214] Peng Z Q, Jian J N, Wen H Q et al. Distributed fiber sensor and machine learning data analytics for pipeline protection against extrinsic intrusions and intrinsic corrosions[J]. Optics Express, 28, 27277-27292(2020).

    [215] Jiang J P, Liu F, Wang H H et al. Lateral positioning of vibration source for underground pipeline monitoring based on ultra-weak fiber Bragg grating sensing array[J]. Measurement, 172, 108892(2021).

    [216] Du Y K, Shang Y, Wang C et al. Intrusive and non-intrusive microflow measurement based on distributed optical fiber acoustic sensing[J]. Measurement, 210, 112513(2023).

    [217] Li T D, Fan C Z, Li H et al. Nonintrusive distributed flow rate sensing system based on flow-induced vibrations detection[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7001808(2021).

    [218] Kurmer J P, Kingsley S A, Laudo J S et al. Distributed fiber optic acoustic sensor for leak detection[J]. Proceedings of SPIE, 1586, 117-128(1992).

    [219] Zhou Y, Jin S J, Zeng Z M. Study on the distributed optical fiber sensing technology for pipeline safety detection and location[J]. Journal of Optoelectronics·Laser, 19, 922-924(2008).

    [220] Walker I, Carr D. Fibre optic leak detection[EB/OL]. https://onepetro.org/OTCONF/proceedings-abstract/03OTC/All-03OTC/34792

    [221] Yan S Z, Chyan L S. Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring[J]. Optical Fiber Technology, 16, 100-109(2010).

    [222] Kwon I B, Jin G H, Seo D C et al. Feasibility study for monitoring of off-shore pipelines using BOTDA system[J]. Proceedings of SPIE, 7317, 73170O(2009).

    [223] Stajanca P, Chruscicki S, Homann T et al. Detection of leak-induced pipeline vibrations using fiber: optic distributed acoustic sensing[J]. Sensors, 18, 2841(2018).

    [224] Boulanger A J, Kominsky D, Hehr A et al. Embedded fiber optic sensors for multi-parameter fluid measurements[C], 0710(2020).

    [225] Saito N, Yari T, Enomoto K. Flight demonstration testing with distributed optical fiber sensor[EB/OL]. https://www.ndt.net/article/ewshm2014/papers/0275.pdf

    [226] Zhu L Q, Sun G K, Bao W M et al. Structural deformation monitoring of flight vehicles based on optical fiber sensing technology: a review and future perspectives[J]. Engineering, 16, 39-55(2022).

    [227] Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications[J]. Sensors, 15, 18666-18713(2015).

    [228] Ba D X, Dong Y K. Distributed optical fiber sensor and its potential applications in health monitoring of aerospace structures[J]. Journal of Astronautics, 41, 730-738(2020).

    [229] Díaz-Maroto Fernández P, Guerrero Vázquez S, García Alonso J et al. Dynamic distributed fibre optic sensing for environmental and operational aircraft monitoring[M]. Rizzo P, Milazzo A. European workshop on structural health monitoring, 128, 352-361(2021).

    [230] Ohanian O J, Davis M A, Valania J et al. Embedded fiber optic SHM sensors for inflatable space habitats[C], 4049(2020).

    [231] Li Y W, Sharif Khodaei Z. The sensitivity enhancement of distributed fiber optical sensors[M]. Rizzo P, Milazzo A. European workshop on structural health monitoring, 253, 351-359(2023).

    [232] Tosi D, Molardi C, Sypabekova M et al. Enhanced backscattering optical fiber distributed sensors: tutorial and review[J]. IEEE Sensors Journal, 21, 12667-12678(2021).

    [233] Zhang X P, Ding Z W, Hong R et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 41, 0106004(2021).

    [234] Liang Z H, Liu D B, Wang X et al. FBG-based strain monitoring and temperature compensation for composite tank[J]. Aerospace Science and Technology, 127, 107724(2022).

    [235] Shan Y N, Ma Z J, Zeng X et al. Research on structural deformation estimation based on distributed optical fiber sensing technology[J]. Chinese Journal of Scientific Instrument, 42, 1-9(2021).

    [236] Park J, Taylor H F, Bennett K D. Fiber optic intrusion sensor[J]. Proceedings of SPIE, 2895, 214-221(1996).

    [237] Rao Y J, Li J Z, Ran Z L et al. Distributed intrusion detection based on combination of phi-OTDR and POTDR[J]. Proceedings of SPIE, 7004, 700461(2008).

    [238] Yang N C, Zhao Y J, Chen J Y et al. Real-time classification for Φ-OTDR vibration events in the case of small sample size datasets[J]. Optical Fiber Technology, 76, 103217(2023).

    [239] Huang X D, Zhang H J, Liu K et al. Hybrid feature extraction-based intrusion discrimination in optical fiber perimeter security system[J]. IEEE Photonics Journal, 9, 7800212(2016).

    [240] Huang X D, Wang Y D, Liu K et al. High-efficiency endpoint detection in optical fiber perimeter security[J]. Journal of Lightwave Technology, 34, 5049-5055(2016).

    [241] Allwood G, Wild G, Hinckley S. Optical fiber sensors in physical intrusion detection systems: a review[J]. IEEE Sensors Journal, 16, 5497-5509(2016).

    [242] Li J C, Wang Y, Wang P F et al. Pattern recognition for distributed optical fiber vibration sensing: a review[J]. IEEE Sensors Journal, 21, 11983-11998(2021).

    [243] Zhang X P, Hu J H, Zhang Y X. A hybrid single-end-access BOTDA and COTDR sensing system using heterodyne detection[J]. Journal of Lightwave Technology, 31, 1954-1959(2013).

    [244] Wang F, Zhang X P, Wang X C et al. Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry[J]. Optics Letters, 38, 2437-2439(2013).

    [245] Zhang J D, Zhu T, Zhou H et al. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses[J]. Optics Express, 24, 27482-27493(2016).

    [246] Huang L J, Fan X Y, He Z Y. Hybrid distributed fiber-optic sensing system by using Rayleigh backscattering lightwave as probe of stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 41, 4374-4380(2023).

    [247] Wang B Z, Ba D X, Chu Q et al. High-sensitivity distributed dynamic strain sensing by combining Rayleigh and Brillouin scattering[J]. Opto-Electronic Advances, 3, 200013(2020).

    [248] Zhou D P, Li W H, Chen L et al. Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber[J]. Sensors, 13, 1836-1845(2013).

    [249] Dang Y L, Zhao Z Y, Tang M et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber[J]. Optics Express, 25, 20183-20193(2017).

    [250] Fu Y, Wang Z N, Zhu R C et al. Ultra-long-distance hybrid BOTDA/Ф-OTDR[J]. Sensors, 18, 976(2018).

    [251] Zhou X, Wang F, Liu Z et al. Hybrid B-OTDR/Φ-OTDR for multi-parameter measurement from a single end of fiber[J]. Optics Express, 30, 29117-29127(2022).

    [252] Kishida K, Li C H, Nishiguchi K et al. Hybrid Brillouin-Rayleigh distributed sensing system[J]. Proceedings of SPIE, 8421, 84212G(2012).

    [253] Kishida K, Yamauchi Y, Guzik A. Study of optical fibers strain-temperature sensitivities using hybrid Brillouin-Rayleigh system[J]. Photonic Sensors, 4, 1-11(2014).

    [254] Clément P, Gabet R, Lanticq V et al. B-OTDR solution for independent temperature and strain measurement in a single acquisition[J]. Journal of Lightwave Technology, 39, 6013-6020(2021).

    [255] Zhou J. Research on key technologies of multi-parameter distributed optical fiber sensing system[D](2016).

    [256] Muanenda Y, Oton C J, Faralli S et al. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection[J]. Optics Letters, 41, 587-590(2016).

    [257] Zhang Y X, Cai Y S, Xiong F et al. A hybrid distributed optical fibre sensor for acoustic and temperature fields reconstruction[J]. Optics Communications, 435, 134-139(2019).

    [258] Zhao Z Y, Dang Y L, Tang M et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber[J]. Journal of Lightwave Technology, 36, 5707-5713(2018).

    [259] Alahbabi M N, Cho Y T, Newson T P. Simultaneous distributed measurements of temperature and strain using spontaneous Raman and Brillouin scattering[J]. Proceedings of SPIE, 5502, 488-491(2004).

    [260] Taki M, Signorini A, Oton C J et al. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 38, 4162-4165(2013).

    [261] Zhao Z Y, Dang Y L, Tang M et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber[J]. Optics Express, 24, 25111-25118(2016).

    [262] Huang L J, Fan X Y, He H J et al. Single-end hybrid Rayleigh Brillouin and Raman distributed fibre-optic sensing system[J]. Light: Advanced Manufacturing, 4, 16(2023).

    [263] Zhu T, He Q, Xiao X H et al. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution[J]. Optics Express, 21, 2953-2963(2013).

    [264] He H J, Shao L Y, Li Z L et al. Distributed vibration sensing with high frequency response based on frequency division multiplexing[C](2016).

    [265] Ma P F, Sun Z S, Liu K et al. Distributed fiber optic vibration sensing with wide dynamic range, high frequency response, and multi-points accurate location[J]. Optics & Laser Technology, 124, 105966(2020).

    [266] Sun Z S, Liu K, Jiang J F et al. Dynamic phase extraction in an ameliorated distributed vibration sensor using a highly stable homodyne detection[J]. IEEE Sensors Journal, 21, 27005-27014(2021).

    [267] Sun Z S, Liu K, Jiang J F et al. Distributed vibration sensing with high frequency response by using WDM based integrated scheme[J]. Journal of Physics D: Applied Physics, 53, 155106(2020).

    [268] Murray M J, Murray J B, Ogden H M et al. Dynamic temperature-strain discrimination using a hybrid distributed fiber sensor based on Brillouin and Rayleigh scattering[J]. Optics Express, 31, 287-300(2022).

    [269] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 30, 1276-1278(2005).

    [270] Kremp T, Westbrook P S, Feder K S et al. Continuous optical fiber gratings for distributed sensing[C], BW4A.1(2022).

    [271] Parent F, Loranger S, Mandal K K et al. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers[J]. Biomedical Optics Express, 8, 2210-2221(2017).

    [272] Feng S W, Xu T W, Huang J F et al. Enhanced SNR phase-sensitive OTDR system with active fiber[J]. Proceedings of SPIE, 10849, 108490C(2018).

    [273] Liu S, Wang Z, Wang A Q et al. Fracturing monitoring of oil-wells using microstructured optical fiber based distributed sensing[J]. Journal of Applied Sciences, 40, 190-203(2022).

    [274] Sun Q Z, Li H, Fan C Z et al. Research progress of distributed acoustic sensing based on scattering enhanced optical fiber[J]. Laser & Optoelectronics Progress, 59, 2100001(2022).

    [275] Redding B, Murray M J, Donko A et al. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors[J]. Optics Express, 28, 14638-14647(2020).

    [276] Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 11, 030602(2013).

    [277] Rothhardt M W, Chojetzki C, Mueller H R. High-mechanical-strength single-pulse draw tower gratings[J]. Proceedings of SPIE, 5579, 127-135(2004).

    [278] Askins C G, Tsai T E, Williams G M et al. Fiber Bragg reflectors prepared by a single excimer pulse[J]. Optics Letters, 17, 833-835(1992).

    [279] Xiao X P, Song Q G, Liu Y B et al. On-line inscribing ultra-weak fiber Bragg grating arrays in UV-transparent coating optical fiber[C], 124-127(2023).

    [280] Wang Y P, Li Z L, Liu S et al. Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology[J]. Journal of Lightwave Technology, 37, 2185-2193(2019).

    [281] Wu M S, Fan X Y, Liu Q W et al. Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array[J]. Optics Letters, 43, 3594-3597(2018).

    [282] Liu T, Li H, He T et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model[J]. Opto-Electronic Advances, 4, 200037(2021).

    [283] Wu M S, Fan X Y, Liu Q W et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 44, 5969-5972(2019).

    [284] Yang W, Fu X L, Wang J Q et al. Demodulation method of identical ultra-weak fiber Bragg grating array based on golay code[C], 256-260(2019).

    [285] Zhang Y X, Fu S Y, Chen Y S et al. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing[J]. Optical Fiber Technology, 53, 101995(2019).

    [286] Li H, Fan C Z, Liu T et al. Time-slot multiplexing based bandwidth enhancement for fiber distributed acoustic sensing[J]. Science China Information Sciences, 65, 119303(2022).

    [287] Masoudi A, Beresna M, Brambilla G. 152 km-range single-ended distributed acoustic sensor based on inline optical amplification and a micromachined enhanced-backscattering fiber[J]. Optics Letters, 46, 552-555(2021).

    [288] Fan C Z, Xiao X P, Li H et al. Full link SNR equalization DAS system over 80 km based on gradient discrete scattering enhanced fiber[C](2023).

    [289] Ashry I, Mao Y, Wang B W et al. A review of distributed fiber-optic sensing in the oil and gas industry[J]. Journal of Lightwave Technology, 40, 1407-1431(2022).

    [290] Lauber T, Lees G. Enhanced temperature measurement performance: fusing DTS and DAS results[J]. IEEE Sensors Journal, 21, 7948-7953(2021).

    [291] Mao Y, Ashry I, Hveding F et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 5600207(2020).

    [292] Ekechukwu G K, Sharma J. Well-scale demonstration of distributed pressure sensing using fiber-optic DAS and DTS[J]. Scientific Reports, 11, 12505(2021).

    [293] Ellmauthaler A, LeBlanc M, Bush J et al. Real-time DAS VSP acquisition and processing on single- and multi-mode fibers[J]. IEEE Sensors Journal, 21, 14847-14852(2021).

    [294] Weng Y, Ip E, Pan Z Q et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 23, 9024-9039(2015).

    [295] Xu P B, Yuan J H, Gao Z S et al. Bending-loss-resistant distributed Brillouin curvature sensor based on an erbium-doped few-mode fiber[J]. Optics Letters, 46, 3239-3242(2021).

    [296] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).

    [297] Amanzadeh M, Aminossadati S M, Kizil M S et al. Recent developments in fibre optic shape sensing[J]. Measurement, 128, 119-137(2018).

    [298] Floris I, Adam J M, Calderón P A et al. Fiber optic shape sensors: a comprehensive review[J]. Optics and Lasers in Engineering, 139, 106508(2021).

    [299] Lally E M, Reaves M, Horrell E et al. Fiber optic shape sensing for monitoring of flexible structures[[J]. Proceedings of SPIE, 8345, 83452Y(2012).

    [300] Yin G L, Lu L, Zhou L et al. Distributed directional torsion sensing based on an optical frequency domain reflectometer and a helical multicore fiber[J]. Optics Express, 28, 16140-16150(2020).

    [301] Westbrook P S, Kremp T, Feder K S et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 35, 1248-1252(2017).

    [302] Zhao Z Y, Shen L, Dang Y L et al. Enabling long range distributed vibration sensing using multicore fiber interferometers[J]. Optics Letters, 46, 3685-3688(2021).

    [303] Zhao Z Y, Tang M, Wang L et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber[J]. Journal of Lightwave Technology, 36, 5764-5772(2018).

    [304] Feng Y X, Xie W L, Meng Y X et al. Multicore fiber enabled fading suppression in φ-OFDR based high resolution quantitative DVS[J]. IEEE Photonics Technology Letters, 34, 1026-1029(2022).

    [305] Xiao X Z, He J, Du B et al. Vectorial distributed acoustic sensing based on a multicore fiber and phase-sensitive optical time-domain reflectometry[J]. Optics Letters, 47, 5413-5416(2022).

    [306] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).

    [307] Fokoua E N, Mousavi S A, Jasion G T et al. Loss in hollow-core optical fibers: mechanisms, scaling rules, and limits[J]. Advances in Optics and Photonics, 15, 1-85(2023).

    [308] Michaud-Belleau V, Fokoua E N, Bradley T D et al. Backscattering in antiresonant hollow-core fibers: over 40 dB lower than in standard optical fibers[J]. Optica, 8, 216-219(2021).

    [309] Slavík R, Fokoua E N, Bradley T D et al. Optical time domain backscattering of antiresonant hollow core fibers[J]. Optics Express, 30, 31310-31321(2022).

    [310] Bykov D S, Schmidt O A, Euser T G et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 9, 461-465(2015).

    [311] Zeltner R, Bykov D S, Xie S et al. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber[J]. Applied Physics Letters, 108, 231107(2016).

    [312] Koeppel M, Sharma A, Podschus J et al. Doppler optical frequency domain reflectometry for remote fiber sensing[J]. Optics Express, 29, 14615-14629(2021).

    [313] Song K Y, Zou W W, He Z Y et al. Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber[J]. Optics Letters, 34, 1381-1383(2009).

    [314] Zou W W, He Z Y, Hotate K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber[J]. Optics Express, 17, 1248-1255(2009).

    [315] Song K Y. High-sensitivity optical time-domain reflectometry based on Brillouin dynamic gratings in polarization maintaining fibers[J]. Optics Express, 20, 27377-27383(2012).

    [316] Dong Y K, Zhang H Y, Lu Z W et al. Long-range and high-spatial-resolution distributed birefringence measurement of a polarization-maintaining fiber based on Brillouin dynamic grating[J]. Journal of Lightwave Technology, 31, 2681-2686(2013).

    [317] Bergman A, Yaron L, Langer T et al. Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of Brillouin dynamic gratings[J]. Journal of Lightwave Technology, 33, 2611-2616(2015).

    [318] Jiang T F, Zhou D W, Xia M et al. Distributed birefringence measurement of a polarization-maintaining fiber with an extended range based on an enhanced Brillouin dynamic grating[J]. IEEE Photonics Journal, 12, 7102607(2020).

    [319] Lee C C, Chiang P W, Chi S. Utilization of a dispersion-shifted fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift[J]. IEEE Photonics Technology Letters, 13, 1094-1096(2001).

    [320] Liu X, Bao X Y. Brillouin spectrum in LEAF and simultaneous temperature and strain measurement[J]. Journal of Lightwave Technology, 30, 1053-1059(2012).

    [321] Wang B W, Wang L, Guo N et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy[J]. Optics Express, 27, 2530-2543(2019).

    [322] Guo Y Y, Han B, Du J T et al. Kilometers long graphene-coated optical fibers for fast thermal sensing[J]. Research, 2021, 5612850(2021).

    [323] Lin T. A high thermal conductivity temperature sensing optical cable[P].

    [327] Li J H, Shen F L, Huang Y H et al. A sensing fiber optic cable structure for distributed fiber optic strain measurement[P].

    [328] Tan F, Zhao J, Miao X M et al. A variable winding pitch sensing optical cable[P].

    [329] Han B, Guan H J, Yao J Z et al. Distributed acoustic sensing with sensitivity-enhanced optical cable[J]. IEEE Sensors Journal, 21, 4644-4651(2021).

    [330] Wan L Q, He G H, Jiang S et al. A vibration sensing optical cable[P].

    [333] Hocker G B. Fiber-optic sensing of pressure and temperature[J]. Applied Optics, 18, 1445-1448(1979).

    [334] Lavrov V S, Plotnikov M Y, Aksarin S M et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings[J]. Optical Fiber Technology, 34, 47-51(2017).

    [335] He X G, Wen P F, Yang H et al. Marine towing cable seismic acquisition with small trace interval based on distributed optical fiber sensing[J]. Geophysical Prospecting for Petroleum, 61, 70-77(2022).

    [336] Yan G F, Long J Q, Jiang L et al. High performance marine towing cable system based on ultra-sensitive fiber-optic distributed acoustic sensing[C], 174-177(2023).

    [337] Lu B, Wu B Y, Gu J F et al. Distributed optical fiber hydrophone based on Φ‑OTDR and its field test[J]. Optics Express, 29, 3147-3162(2021).

    [338] Chen J F, Li H, Xiao X P et al. Fully distributed hydroacoustic sensing based on ultra-highly sensitive and lightweight fiber-optic hydrophone cable[J]. Optics and Lasers in Engineering, 169, 107734(2023).

    [339] Jousset P, Currenti G, Schwarz B et al. Fibre optic distributed acoustic sensing of volcanic events[J]. Nature Communications, 13, 1753(2022).

    [340] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).

    [341] Muñoz F, Soto M A. Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing[J]. Nature Communications, 13, 4019(2022).

    [342] Wang G, Pang Z W, Zhang B H et al. Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link[J]. Photonics Research, 10, 433-443(2022).

    [343] Wu H J, Qian Y, Zhang W et al. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring[J]. Photonic Sensors, 7, 305-310(2017).

    [344] Marie T F B, Han D Z, An B W et al. A research on fiber-optic vibration pattern recognition based on time-frequency characteristics[J]. Advances in Mechanical Engineering, 10, 1-10(2018).

    [345] Jia H Z, Lou S Q, Liang S et al. Event identification by F-ELM model for φ‑OTDR fiber-optic distributed disturbance sensor[J]. IEEE Sensors Journal, 20, 1297-1305(2020).

    [346] Tejedor J, Martins H F, Piote D et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. Journal of Lightwave Technology, 34, 4445-4453(2016).

    [347] Tejedor J, Macias-Guarasa J, Martins H F et al. A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection[J]. Journal of Lightwave Technology, 37, 4514-4522(2019).

    [348] Wu H J, Liu X R, Xiao Y et al. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ‑OTDR[J]. Journal of Lightwave Technology, 37, 4991-5000(2019).

    [349] Wu H J, Chen J P, Liu X R et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 37, 4359-4366(2019).

    [350] Zhang S X, He T, Fan C Z et al. An intrusion recognition method based on the combination of one-dimensional CNN and DenseNet with DAS system[C], T1A.3(2021).

    [351] Liu M X, Wang X, Liang S et al. Single and composite disturbance event recognition based on the DBN-GRU network in φ-OTDR[J]. Applied Optics, 62, 133-141(2023).

    [352] Aktas M, Akgun T, Demircin M U et al. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications[J]. Proceedings of SPIE, 10208, 102080G(2017).

    [353] Li H L, Zhang Z H, Jiang F et al. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN[J]. Proceedings of SPIE, 10618, 1061804(2018).

    [354] Xu C J, Guan J J, Bao M et al. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR[J]. Optical Engineering, 57, 016103(2018).

    [355] Wu H J, Gan D K, Xu C R et al. Improved generalization in signal identification with unsupervised spiking neuron networks for fiber-optic distributed acoustic sensor[J]. Journal of Lightwave Technology, 40, 3072-3083(2022).

    [356] Li S Z, Peng R Z, Liu Z L. A surveillance system for urban buried pipeline subject to third-party threats based on fiber optic sensing and convolutional neural network[J]. Structural Health Monitoring, 20, 1704-1715(2021).

    [357] Shi Y, Li Y H, Zhang Y C et al. An easy access method for event recognition of Φ-OTDR sensing system based on transfer learning[J]. Journal of Lightwave Technology, 39, 4548-4555(2021).

    [358] Yang Y Y, Zhang H F, Li Y. Long-distance pipeline safety early warning: a distributed optical fiber sensing semi-supervised learning method[J]. IEEE Sensors Journal, 21, 19453-19461(2021).

    [359] Wang Z Y, Zheng H R, Li L C et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network[J]. Optics Express, 27, 23682-23692(2019).

    [360] Wu H J, Zhang L Q, Qian Y et al. Multi-scale wavelet decomposition and its application in distributed optical fiber fences[J]. Proceedings of SPIE, 9655, 96553U(2015).

    [361] Tu G J, Yu B L, Zhen S L et al. Enhancement of signal identification and extraction in a Φ‑OTDR vibration sensor[J]. IEEE Photonics Journal, 9, 7100710(2017).

    [362] Wang Z Y, Yang J Q, Gu J F et al. Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology[J]. Optics Letters, 45, 5672-5675(2020).

    [363] Wu H J, Liu Y M, Tu Y L et al. Multi-source separation under two “blind” conditions for fiber-optic distributed acoustic sensor[J]. Journal of Lightwave Technology, 40, 2601-2611(2022).

    [364] Lyu C G, Niu Z H, Tian J C et al. Identification of intrusion events based on distributed optical fiber sensing in complex environment[J]. IEEE Internet of Things Journal, 9, 24212-24220(2022).

    [365] Shao L Y, Liu S Q, Bandyopadhyay S et al. Data-driven distributed optical vibration sensors: a review[J]. IEEE Sensors Journal, 20, 6224-6239(2019).

    [366] Liehr S. Artificial neural networks for distributed optical fiber sensing[C](2021).

    [367] Kandamali D F, Cao X M, Tian M L et al. Machine learning methods for identification and classification of events in ϕ‑OTDR systems: a review[J]. Applied Optics, 61, 2975-2997(2022).

    [368] Qin Z G, Chen L, Bao X Y. Wavelet denoising method for improving detection performance of distributed vibration sensor[J]. IEEE Photonics Technology Letters, 24, 542-544(2012).

    [369] Hui X N, Zheng S L, Zhou J H et al. Hilbert-Huang transform time-frequency analysis in Φ-OTDR distributed sensor[J]. IEEE Photonics Technology Letters, 26, 2403-2406(2014).

    [370] Abufana S A, Dalveren Y, Aghnaiya A et al. Variational mode decomposition-based threat classification for fiber optic distributed acoustic sensing[J]. IEEE Access, 8, 100152-100158(2020).

    [371] Zhu T, Xiao X H, He Q et al. Enhancement of SNR and spatial resolution in Φ-OTDR system by using two-dimensional edge detection method[J]. Journal of Lightwave Technology, 31, 2851-2856(2013).

    [372] Zhu H, Pan C, Sun X H. Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system[J]. Proceedings of SPIE, 9062, 906205(2014).

    [373] Fang N, Wang L T, Jia D J et al. Walking intrusion signal recognition method for fiber fence system[C], WL96(2009).

    [374] Wang Z Y, Pan Z Q, Ye Q et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence[J]. Chinese Journal of Lasers, 42, 0405010(2015).

    [375] Sun Q, Feng H, Yan X Y et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 15, 15179-15197(2015).

    [376] Tejedor J, Macias-Guarasa J, Martins H F et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 17, 355(2017).

    [377] Zhang J N, Lou S Q, Liang S. Study of pattern recognition based on SVM algorithm for φ-OTDR distributed optical fiber disturbance sensing system[J]. Infrared and Laser Engineering, 46, 0422003(2017).

    [378] Wang X, Liu Y, Liang S et al. Event identification based on random forest classifier for Φ‑OTDR fiber-optic distributed disturbance sensor[J]. Infrared Physics & Technology, 97, 319-325(2019).

    [379] Wang Z D, Lou S Q, Liang S et al. Multi-class disturbance events recognition based on EMD and XGBoost in φ-OTDR[J]. IEEE Access, 8, 63551-63558(2020).

    [380] Shiloh L, Eyal A, Giryes R. Efficient processing of distributed acoustic sensing data using a deep learning approach[J]. Journal of Lightwave Technology, 37, 4755-4762(2019).

    [381] Yang Y Y, Li Y, Zhang T J et al. Early safety warnings for long-distance pipelines: a distributed optical fiber sensor machine learning approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 14991-14999(2021).

    [382] Azad A K, Khan F N, Alarashi W H et al. Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition[J]. Optics Express, 25, 16534-16549(2017).

    [383] Wu H, Wang L, Guo N et al. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction[J]. Journal of Lightwave Technology, 35, 4159-4167(2017).

    [384] Tan H X, Wu H, Shen L et al. Sparse representation of Brillouin spectrum using dictionary learning[J]. Optics Express, 28, 18160-18171(2020).

    [385] Liang Y X, Jiang J L, Chen Y X et al. Optimized feedforward neural network training for efficient Brillouin frequency shift retrieval in fiber[J]. IEEE Access, 7, 68034-68042(2019).

    [386] Chang Y Q, Wu H, Zhao C et al. Distributed Brillouin frequency shift extraction via a convolutional neural network[J]. Photonics Research, 8, 690-697(2020).

    [387] Wu H, Wan Y Y, Tang M et al. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks[J]. Journal of Lightwave Technology, 37, 2648-2653(2019).

    [388] Liu J Y, Wang T, Zhang Q et al. Rapid noise removal based dual adversarial network for the Brillouin optical time domain analyzer[J]. Optics Express, 29, 34002-34014(2021).

    [389] Zheng H, Yan Y X, Wang Y Y et al. Deep learning enhanced long-range fast BOTDA for vibration measurement[J]. Journal of Lightwave Technology, 40, 262-268(2022).

    [390] Liehr S, Borchardt C, Münzenberger S. Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers[J]. Optics Express, 28, 39311-39325(2020).

    [391] Caceres J N, Noda K, Zhu G T et al. Spatial resolution enhancement of Brillouin optical correlation-domain reflectometry using convolutional neural network: proof of concept[J]. IEEE Access, 9, 124701-124710(2021).

    [392] Zhao Y, Ansari F. Embedded fiber optic sensor for characterization of interface strains in FRP composite[J]. Sensors and Actuators A: Physical, 100, 247-251(2002).

    [393] Ansari F. Practical implementation of optical fiber sensors in civil structural health monitoring[J]. Journal of Intelligent Material Systems and Structures, 18, 879-889(2007).

    [394] Wang H P, Jiang L Z, Xiang P. Priority design parameters of industrialized optical fiber sensors in civil engineering[J]. Optics & Laser Technology, 100, 119-128(2018).

    [395] Wang H P, Xiang P. Optimization design of optical fiber sensors based on strain transfer theory[J]. Optics and Precision Engineering, 24, 1233-1241(2016).

    [396] Zhang X P, Wang F, Lu Y G. Fully distributed optical fiber sensor based on Brillouin effect[J]. Laser & Optoelectronics Progress, 46, 14-20(2009).

    [397] Wang H P, Yin J Y, Yang S H et al. Parametric reflection of the quasi-distributed optical fiber sensors with flexible packaging layer for bending strain measurement[J]. Optics & Laser Technology, 158, 108893(2023).

    [398] Wang H P, Chen C, Ni Y Q et al. Computer-aided feature recognition of CFRP plates based on real-time strain fields reflected from FBG measured signals[J]. Composites Part B: Engineering, 263, 110866(2023).

    [399] Yan Y X, Zheng H, Zhao Z Y et al. Distributed optical fiber sensing assisted by optical communication techniques[J]. Journal of Lightwave Technology, 39, 3654-3670(2021).

    [400] Zhou J, Pan Z Q, Ye Q et al. Characteristics and explanations of interference fading of a ϕ‑OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 31, 2947-2954(2013).

    [401] Voskoboinik A, Yilmaz O F, Willner A W et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 19, B842-B847(2011).

    [402] Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 25, 8315-8325(2017).

    [403] Wu Y, Wang Z N, Xiong J et al. Interference fading elimination with single rectangular pulse in OTDR[J]. Journal of Lightwave Technology, 37, 3381-3387(2019).

    [404] He H J, Yan L S, Qian H et al. Suppression of the interference fading in phase-sensitive OTDR with phase-shift transform[J]. Journal of Lightwave Technology, 39, 295-302(2021).

    [405] Wang Z Y, Pan Z Q, Fang Z J et al. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source[J]. Optics Letters, 40, 5192-5195(2015).

    [406] Wu M S, Fan X Y, Zhang X P et al. Frequency response enhancement of phase-sensitive OTDR for interrogating weak reflector array by using OFDM and vernier effect[J]. Journal of Lightwave Technology, 38, 4874-4882(2020).

    [407] Soriano-Amat M, Martins H F, Durán V et al. Time-expanded phase-sensitive optical time-domain reflectometry[J]. Light: Science & Applications, 10, 51(2021).

    [408] Jin C, Wang L, Chen Y L et al. Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer[J]. Optics Express, 25, 9213-9224(2017).

    [409] Liang Z H, Pan J S, Gao S C et al. Spatial resolution improvement of single-shot digital optical frequency comb-based Brillouin optical time domain analysis utilizing multiple pump pulses[J]. Optics Letters, 43, 3534-3537(2018).

    [410] Wu Y C, Yang C K, Pan J S et al. Ultrafast resolution-enhanced digital optical frequency comb-based BOTDA with pump pulse array coding[J]. Sensors, 20, 6411(2020).

    [411] He H, Zhao Z Y, Fu S N et al. High spatial resolution fast Brillouin optical time-domain analysis enabled by frequency-agility digital optical frequency comb[J]. Optics Letters, 47, 3403-3406(2022).

    [412] Ren M Q, Lu P, Chen L et al. Theoretical and experimental analysis of ϕ-OTDR based on polarization diversity detection[J]. IEEE Photonics Technology Letters, 28, 697-700(2016).

    [413] Dorize C, Awwad E, Renaudier J. High sensitivity ϕ-OTDR over long distance with polarization multiplexed codes[J]. IEEE Photonics Technology Letters, 31, 1654-1657(2019).

    [414] Urricelqui J, López-Fernandino F, Sagues M et al. Polarization diversity scheme for BOTDA sensors based on a double orthogonal pump interaction[J]. Journal of Lightwave Technology, 33, 2633-2638(2015).

    [415] Lopez-Gil A, Dominguez-Lopez A, Martin-Lopez S et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands[J]. Journal of Lightwave Technology, 33, 2605-2610(2014).

    [416] Zornoza A, Sagues M, Loayssa A. Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA[J]. Journal of Lightwave Technology, 30, 1066-1072(2012).

    [417] Jousset P, Reinsch T, Ryberg T et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 9, 2509(2018).

    [418] Williams E F, Fernández-Ruiz M R, Magalhaes R et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10, 5778(2019).

    [419] Sladen A, Rivet D, Ampuero J P et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables[J]. Nature Communications, 10, 5777(2019).

    [420] Lindsey N J, Dawe T C, Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing[J]. Science, 366, 1103-1107(2019).

    [421] Ip E, Fang J, Li Y W et al. Distributed fiber sensor network using telecom cables as sensing media: technology advancements and applications[J]. Journal of Optical Communications and Networking, 14, A61-A68(2021).

    [422] Ip E, Ravet F, Martins H et al. Using global existing fiber networks for environmental sensing[J]. Proceedings of the IEEE, 110, 1853-1888(2022).

    [423] Huang M F, Salemi M, Chen Y H et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network[J]. Journal of Lightwave Technology, 38, 75-81(2020).

    [424] Liu H S, Huang M F, Chen Y H et al. New methods for non-destructive underground fiber localization using distributed fiber optic sensing technology[C](2020).

    [425] Xia T J, Wellbrock G A, Huang M F et al. First proof that geographic location on deployed fiber cable can be determined by using OTDR distance based on distributed fiber optical sensing technology[C](2020).

    [426] Hino T, Huang M F, Philip J. Optical fiber sensing technology visualizing the real world via network infrastructures: AI technologies for traffic monitoring[J]. IEICE Technical Report, 121, 29-35(2021).

    [427] Huang M F, Fang J, Han S B et al. Evolution of fiber infrastructure - from data transmission to network sensing[C](2022).

    [428] Wellbrock G A, Xia T J, Huang M F et al. Explore benefits of distributed fiber optic sensing for optical network service providers[J]. Journal of Lightwave Technology, 41, 3758-3766(2023).

    [429] Marra G, Clivati C, Luckett R et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 361, 486-490(2018).

    [430] Di Luch I, Ferrario M, Boffi P et al. Demonstration of structural vibration sensing in a deployed PON infrastructure[C], 1-3(2020).

    [431] Di Luch I, Boffi P, Ferrario M et al. Vibration sensing for deployed metropolitan fiber infrastructure[J]. Journal of Lightwave Technology, 39, 1204-1211(2021).

    [432] Marra G, Fairweather D M, Kamalov V et al. Optical interferometry-based array of seafloor environmental sensors using a transoceanic submarine cable[J]. Science, 376, 874-879(2022).

    [433] Zhan Z W, Cantono M, Kamalov V et al. Optical polarization-based seismic and water wave sensing on transoceanic cables[J]. Science, 371, 931-936(2021).

    [434] Ip E, Huang Y K, Wellbrock G et al. Vibration detection and localization using modified digital coherent telecom transponders[J]. Journal of Lightwave Technology, 40, 1472-1482(2022).

    [435] Ran Z L, Rao Y J, Luo L W et al. φ-OTDR used for providing security service in EPON[C](2009).

    [436] Honda N, Iida D, Izumita H et al. In-service line monitoring system in PONs using 1650-nm Brillouin OTDR and fibers with individually assigned BFSs[J]. Journal of Lightwave Technology, 27, 4575-4582(2009).

    [437] Huang Y K, Ip E. Simultaneous optical fiber sensing and mobile front-haul access over a passive optical network[C](2020).

    [438] Ng W P, Lalam N, Dai X W et al. Integrating radio-over-fiber communication system and BOTDR sensor system[J]. Sensors, 20, 2232(2020).

    [439] Jia Z S, Campos L A, Xu M et al. Experimental coexistence investigation of distributed acoustic sensing and coherent communication systems[C](2021).

    [440] Ip E, Huang Y K, Wang T et al. Distributed acoustic sensing for datacenter optical interconnects using self-homodyne coherent detection[C], W1G.4(2022).

    [441] Ip E, Huang Y K, Huang M F et al. DAS over 1, 007-km hybrid link with 10-Tb/s DP-16QAM co-propagation using frequency-diverse chirped pulses[J]. Journal of Lightwave Technology, 41, 1077-1086(2023).

    [442] Marin J M, Briantcev D, Kang C H et al. Hybrid distributed acoustic sensing and Kramers-Kronig communication system over a two-mode fiber[C], W4C.6(2023).

    [443] Takushima Y, Chung Y C. Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network[J]. Optics Express, 15, 5318-5326(2007).

    [444] Martins H F, Shi K, Thomsen B C et al. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data[J]. Optics Express, 24, 22303-22318(2016).

    [445] He H J, Jiang L, Pan Y et al. Integrated sensing and communication in an optical fibre[J]. Light: Science & Applications, 12, 25(2023).

    [446] Nishio M, Mizutani T, Takeda N. Structural shape identification using distributed strain data from PPP-BOTDA[J]. Proceedings of SPIE, 6530, 65301J(2007).

    [447] Nishio M, Mizutani T, Takeda N. Shape identification of variously-deformed composite laminates using Brillouin type distributed strain sensing system with embedded optical fibers[J]. Proceedings of SPIE, 6932, 69322P(2008).

    [448] Zhao Z Y, Soto M A, Tang M et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 24, 25211-25223(2016).

    [449] Ba D X, Chen C, Fu C et al. A high-performance and temperature-insensitive shape sensor based on DPP-BOTDA[J]. IEEE Photonics Journal, 10, 7100810(2017).

    [450] Xu P B, Guo H P, Wang X L et al. Ring-core few-mode fiber and DPP-BOTDA-based distributed large-curvature sensing eligible for shape reconstruction[J]. Optics Express, 30, 42553-42563(2022).

    [451] Blandino J, Duncan R, Nuckels M et al. Three-dimensional shape sensing for inflatable booms[C], 1807(2005).

    [452] Zhao S Y, Cui J W, Yang C Q et al. Simultaneous measurement of shape and temperature in the substrate-attaching-fibers sensing system[J]. IEEE Photonics Journal, 9, 6805008(2017).

    [453] Issatayeva A, Amantayeva A, Blanc W et al. Design and analysis of a fiber-optic sensing system for shape reconstruction of a minimally invasive surgical needle[J]. Scientific Reports, 11, 8609(2021).

    [454] Yin G L, Xu Z, Jiang R et al. Optical fiber distributed three-dimensional shape sensing technology based on optical frequency-domain reflectometer[J]. Acta Optica Sinica, 42, 0106002(2022).

    [455] Duncan R G, Raum M T. Characterization of a fiber-optic shape and position sensor[J]. Proceedings of SPIE, 6167, 616704(2006).

    [456] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 65301S(2007).

    [457] Meng Y J, Fu C L, Du C et al. Shape sensing using two outer cores of multicore fiber and optical frequency domain reflectometer[J]. Journal of Lightwave Technology, 39, 6624-6630(2021).

    [458] Floris I, Madrigal J, Sales S et al. Twisting measurement and compensation of optical shape sensor based on spun multicore fiber[J]. Mechanical Systems and Signal Processing, 140, 106700(2020).

    [459] Yin G L, Xu Z, Ma J M et al. Simultaneous measurement of bending and torsion in optical fiber shape sensor[J]. Journal of Lightwave Technology, 41, 1851-1857(2023).

    [460] Beisenova A, Issatayeva A, Iordachita I et al. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing[J]. Optics Express, 27, 22074-22087(2019).

    [461] Beisenova A, Issatayeva A, Korganbayev S et al. Simultaneous distributed sensing on multiple MgO-doped high scattering fibers by means of scattering-level multiplexing[J]. Journal of Lightwave Technology, 37, 3413-3421(2019).

    [462] Parent F, Gérard M, Monet F et al. Intra-arterial image guidance with optical frequency domain reflectometry shape sensing[J]. IEEE Transactions on Medical Imaging, 38, 482-492(2019).

    [463] Lv Y J, Li H L, Yang Z Y et al. Highly accurate 3D shape sensing based on special fiber OFDR system assisted with ICP algorithm[C], Tu1.7(2022).

    [464] Fu C L, Meng Y J, Chen L et al. High-spatial-resolution φ‑OFDR shape sensor based on multicore optical fiber with femtosecond-laser-induced permanent scatter arrays[J]. Optics Letters, 48, 3219-3222(2023).

    [465] Zhang K, Bai Q, Zhou X X et al. 2D shape sensing accuracy improvement based on OFDR using median filter[J]. Journal of Electronic Measurement and Instrumentation, 36, 186-192(2022).

    [466] Li S, Hua P D, Ding Z Y et al. Reconstruction error model of distributed shape sensing based on the reentered frame in OFDR[J]. Optics Express, 30, 43255-43270(2022).

    [467] Yin G L, Xu Z, Zhu T. Distributed real-time monitoring of residual stress during packaging process of optical fiber shape sensor[J]. Acta Optica Sinica, 42, 1606002(2022).

    [468] Cheng F, Chi B X, Lindsey N J et al. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization[J]. Scientific Reports, 11, 5613(2021).

    [469] Currenti G, Allegra M, Cannavò F et al. Distributed dynamic strain sensing of very long period and long period events on telecom fiber-optic cables at Vulcano, Italy[J]. Scientific Reports, 13, 4641(2023).

    [470] Gutscher M A, Quetel L, Murphy S et al. Detecting strain with a fiber optic cable on the seafloor offshore Mount Etna, Southern Italy[J]. Earth and Planetary Science Letters, 616, 118230(2023).

    [471] Landrø M, Bouffaut L, Kriesell H J et al. Sensing whales, storms, ships and earthquakes using an Arctic fibre optic cable[J]. Scientific Reports, 12, 19226(2022).

    [472] Rivet D, de Cacqueray B, Sladen A et al. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable[J]. The Journal of the Acoustical Society of America, 149, 2615-2627(2021).

    [473] Chen X H, Zou N M, Wan Y M et al. On-line status monitoring and surrounding environment perception of an underwater cable based on the phase-locked Φ-OTDR sensing system[J]. Optics Express, 30, 30312-30330(2022).

    [474] Bouffaut L, Taweesintananon K, Kriesell H J et al. Eavesdropping at the speed of light: distributed acoustic sensing of baleen whales in the Arctic[J]. Frontiers in Marine Science, 9, 901348(2022).

    Xuping Zhang, Yixin Zhang, Liang Wang, Kuanglu Yu, Bo Liu, Guolu Yin, Kun Liu, Xuan Li, Shinian Li, Chuanqi Ding, Yuquan Tang, Ying Shang, Yishou Wang, Chen Wang, Feng Wang, Xinyu Fan, Qizhen Sun, Shangran Xie, Huijuan Wu, Hao Wu, Huaping Wang, Zhiyong Zhao. Current Status and Future of Research and Applications for Distributed Fiber Optic Sensing Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106001
    Download Citation