[1] Nichols E F, Hull G F. A preliminary communication on the pressure of heat and light radiation[J]. Physical Review (Series I), 13, 307-320(1901).
[2] Lebedew P. Untersuchungen über die druckkräfte des lichtes[J]. Annalen der Physik, 311, 433-458(1901).
[3] Dorsel A, McCullen J D, Meystre P et al. Optical bistability and mirror confinement induced by radiation pressure[J]. Physical Review Letters, 51, 1550-1553(1983).
[4] Braginsky V B, Vyatchanin S P. Low quantum noise tranquilizer for Fabry-Perot interferometer[J]. Physics Letters A, 293, 228-234(2002).
[5] Braginskiĭ V B, Manukin A B[M]. Measurement of weak forces in physics experiments(1977).
[6] Bradaschia C, Del Fabbro R, Di Virgilio A et al. The VIRGO project: a wide band antenna for gravitational wave detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 289, 518-525(1990).
[7] Abramovici A, Althouse W E, Drever R W P et al. LIGO: the laser interferometer gravitational-wave observatory[J]. Science, 256, 325-333(1992).
[8] Chan J, Alegre T P M, Safavi-Naeini A H et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 478, 89-92(2011).
[9] Verhagen E, Deléglise S, Weis S et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode[J]. Nature, 482, 63-67(2012).
[10] Wallraff A, Schuster D, Blais A et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 431, 162-167(2004).
[11] Pirkkalainen J M, Damskägg E, Brandt M et al. Squeezing of quantum noise of motion in a micromechanical resonator[J]. Physical Review Letters, 115, 243601(2015).
[12] Barzanjeh S, Redchenko E S, Peruzzo M et al. Stationary entangled radiation from micromechanical motion[J]. Nature, 570, 480-483(2019).
[13] MacFarlane A G J, Dowling J P, Milburn G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 361, 1655-1674(2003).
[14] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).
[15] Law C K. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation[J]. Physical Review A, 51, 2537-2541(1995).
[16] Nunnenkamp A, Børkje K, Girvin S M. Single-photon optomechanics[J]. Physical Review Letters, 107, 063602(2011).
[17] Rabl P. Photon blockade effect in optomechanical systems[J]. Physical Review Letters, 107, 063601(2011).
[18] O’Connell A D, Hofheinz M, Ansmann M et al. Quantum ground state and single-phonon control of a mechanical resonator[J]. Nature, 464, 697-703(2010).
[19] Clerk A A, Lehnert K W, Bertet P et al. Hybrid quantum systems with circuit quantum electrodynamics[J]. Nature Physics, 16, 257-267(2020).
[20] Chu Y W, Kharel P, Renninger W H et al. Quantum acoustics with superconducting qubits[J]. Science, 358, 199-202(2017).
[21] Teufel J D, Donner T, Li D L et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature, 475, 359-363(2011).
[22] Peterson R W, Purdy T P, Kampel N S et al. Laser cooling of a micromechanical membrane to the quantum backaction limit[J]. Physical Review Letters, 116, 063601(2016).
[23] Chegnizadeh M, Scigliuzzo M, Youssefi A et al. Quantum collective motion of macroscopic mechanical oscillators[J]. Science, 386, 1383-1388(2024).
[24] Huang G H, Beccari A, Engelsen N J et al. Room-temperature quantum optomechanics using an ultralow noise cavity[J]. Nature, 626, 512-516(2024).
[25] Rossi M, Mason D, Chen J X et al. Measurement-based quantum control of mechanical motion[J]. Nature, 563, 53-58(2018).
[26] Clark J B, Lecocq F, Simmonds R W et al. Sideband cooling beyond the quantum backaction limit with squeezed light[J]. Nature, 541, 191-195(2017).
[27] Liu Y L, Zhou J W, Mercier de Lépinay L et al. Quantum backaction evading measurements of a silicon nitride membrane resonator[J]. New Journal of Physics, 24, 083043(2022).
[28] Liu Y L, Liu Q C, Sun H Y et al. Coherent memory for microwave photons based on long-lived mechanical excitations[J]. NPJ Quantum Information, 9, 80(2023).
[29] Liu Y L, Sun H Y, Liu Q C et al. Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals[J]. Nature Communications, 16, 1207(2025).
[30] Xia Z W, Tang J D, Jiang Q Y et al. Key technologies for detecting acoustic quantum states in one-dimensional optomechanical crystal nanobeam[J]. Journal of University of Electronic Science and Technology of China, 52, 322-330(2023).
[31] Wang Y, Shi Z P, Kuang H Y et al. Realization of quantum ground state in an optomechanical crystal cavity[J]. Science China Physics, 66, 124213(2023).
[32] Liao Q H, Qiu H Y, Cheng S P et al. Intracavity-squeezed cooling in double-Laguerre-Gaussian-cavity optomechanical system[J]. Acta Optica Sinica, 44, 0327001(2024).
[33] Safavi-Naeini A H, Chan J, Hill J T et al. Observation of quantum motion of a nanomechanical resonator[J]. Physical Review Letters, 108, 033602(2012).
[34] Manenti R, Kockum A F, Patterson A et al. Circuit quantum acoustodynamics with surface acoustic waves[J]. Nature Communications, 8, 975(2017).
[35] Moores B A, Sletten L R, Viennot J J et al. Cavity quantum acoustic device in the multimode strong coupling regime[J]. Physical Review Letters, 120, 227701(2018).
[36] Bienfait A, Zhong Y P, Chang H S et al. Quantum erasure using entangled surface acoustic phonons[J]. Physical Review X, 10, 021055(2020).
[37] Cohen J D, Meenehan S M, MacCabe G S et al. Phonon counting and intensity interferometry of a nanomechanical resonator[J]. Nature, 520, 522-525(2015).
[38] Viennot J J, Ma X, Lehnert K W. Phonon-number-sensitive electromechanics[J]. Physical Review Letters, 121, 183601(2018).
[39] Arrangoiz-Arriola P, Wollack E A, Wang Z Y et al. Resolving the energy levels of a nanomechanical oscillator[J]. Nature, 571, 537-540(2019).
[40] Cleland A Y, Wollack E A, Safavi-Naeini A H. Studying phonon coherence with a quantum sensor[J]. Nature Communications, 15, 4979(2024).
[41] Vitali D, Gigan S, Ferreira A et al. Optomechanical entanglement between a movable mirror and a cavity field[J]. Physical Review Letters, 98, 030405(2007).
[42] Genes C, Ritsch H, Drewsen M et al. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency[J]. Physical Review A, 84, 051801(2011).
[43] Børkje K, Nunnenkamp A, Girvin S M. Proposal for entangling remote micromechanical oscillators via optical measurements[J]. Physical Review Letters, 107, 123601(2011).
[44] Palomaki T A, Teufel J D, Simmonds R W et al. Entangling mechanical motion with microwave fields[J]. Science, 342, 710-713(2013).
[45] Riedinger R, Hong S, Norte R A et al. Non-classical correlations between single photons and phonons from a mechanical oscillator[J]. Nature, 530, 313-316(2016).
[46] Meesala S, Wood S, Lake D et al. Non-classical microwave-optical photon pair generation with a chip-scale transducer[J]. Nature Physics, 20, 871-877(2024).
[47] Marinković I, Wallucks A, Riedinger R et al. Optomechanical Bell test[J]. Physical Review Letters, 121, 220404(2018).
[48] Riedinger R, Wallucks A, Marinković I et al. Remote quantum entanglement between two micromechanical oscillators[J]. Nature, 556, 473-477(2018).
[49] Brown L S. Squeezed states and quantum-mechanical parametric amplification[J]. Physical Review A, 36, 2463-2466(1987).
[50] Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical noise squeezing[J]. Physical Review Letters, 67, 699-702(1991).
[51] Liao J Q, Law C K. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics[J]. Physical Review A, 83, 033820(2011).
[52] Pontin A, Bonaldi M, Borrielli A et al. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring[J]. Physical Review Letters, 112, 023601(2014).
[53] Wollman E E, Lei C U, Weinstein A J et al. Quantum squeezing of motion in a mechanical resonator[J]. Science, 349, 952-955(2015).
[54] Guo Q, Ren X Q, Bai C H et al. Mechanical squeezing in an active-passive-coupled double-cavity optomechanical system via pump modulation[J]. Optics Express, 30, 47070-47081(2022).
[55] Li Y H, Xu A N, Huang L G et al. Mechanical squeezing via detuning-switched driving[J]. Physical Review A, 107, 033508(2023).
[56] Youssefi A, Kono S, Chegnizadeh M et al. A squeezed mechanical oscillator with millisecond quantum decoherence[J]. Nature Physics, 19, 1697-1702(2023).
[57] Khalili F, Danilishin S, Miao H X et al. Preparing a mechanical oscillator in non-Gaussian quantum states[J]. Physical Review Letters, 105, 070403(2010).
[58] Hong S, Riedinger R, Marinković I et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator[J]. Science, 358, 203-206(2017).
[59] Xie H, Liao C G, Shang X et al. Phonon blockade in a quadratically coupled optomechanical system[J]. Physical Review A, 96, 013861(2017).
[60] Huang G F, Deng W W, Tan H T et al. Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity[J]. Physical Review A, 99, 043819(2019).
[61] Wang M, Yin T S, Sun Z Y et al. Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems[J]. Optics Express, 30, 10251-10268(2022).
[62] Galinskiy I, Enzian G, Parniak M et al. Nonclassical correlations between photons and phonons of center-of-mass motion of a mechanical oscillator[J]. Physical Review Letters, 133, 173605(2024).
[63] Carmon T, Rokhsari H, Yang L et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode[J]. Physical Review Letters, 94, 223902(2005).
[64] Kippenberg T J, Rokhsari H, Carmon T et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity[J]. Physical Review Letters, 95, 033901(2005).
[65] Rokhsari H, Kippenberg T J, Carmon T et al. Radiation-pressure-driven micro-mechanical oscillator[J]. Optics Express, 13, 5293-5301(2005).
[66] Hossein-Zadeh M, Vahala K J. Observation of injection locking in an optomechanical rf oscillator[J]. Applied Physics Letters, 93, 191115(2008).
[67] Bekker C, Kalra R, Baker C et al. Injection locking of an electro-optomechanical device[J]. Optica, 4, 1196-1204(2017).
[68] Alonso-Tomás D, Arregui G, Mercadé L et al. Cascaded injection locking of optomechanical crystal oscillators[J]. APL Photonics, 9, 116108(2024).
[69] Kemiktarak U, Durand M, Metcalfe M et al. Mode competition and anomalous cooling in a multimode phonon laser[J]. Physical Review Letters, 113, 030802(2014).
[70] Tang J D, Xia Z W, Bin Q et al. Dual-driving parametric locking of GHz phonon sources to sub-hertz linewidth in optomechanical systems[J]. Optica, 11, 1103-1112(2024).
[71] Girvin S M. Circuit QED: superconducting qubits coupled to microwave photons[M]. Quantum machines: measurement and control of engineered quantum systems, 113-256(2014).
[72] Zhong T, Goldner P. Emerging rare-earth doped material platforms for quantum nanophotonics[J]. Nanophotonics, 8, 2003-2015(2019).
[73] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017).
[74] Takesue H, Dyer S D, Stevens M J et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors[J]. Optica, 2, 832-835(2015).
[75] Tian L, Wang H L. Optical wavelength conversion of quantum states with optomechanics[J]. Physical Review A, 82, 053806(2010).
[76] Barzanjeh S, Abdi M, Milburn G J et al. Reversible optical-to-microwave quantum interface[J]. Physical Review Letters, 109, 130503(2012).
[77] Lauk N, Sinclair N, Barzanjeh S et al. Perspectives on quantum transduction[J]. Quantum Science and Technology, 5, 020501(2020).
[78] Andrews R W, Peterson R W, Purdy T P et al. Bidirectional and efficient conversion between microwave and optical light[J]. Nature Physics, 10, 321-326(2014).
[79] Brubaker B M, Kindem J M, Urmey M D et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer[J]. Physical Review X, 12, 021062(2022).
[80] Kharel P, Chu Y, Mason D et al. Multimode strong coupling in cavity optomechanics[J]. Physical Review Applied, 18, 024054(2022).
[81] Yoon T, Mason D, Jain V et al. Simultaneous Brillouin and piezoelectric coupling to a high-frequency bulk acoustic resonator[J]. Optica, 10, 110-117(2023).
[82] Eichenfield M, Chan J, Camacho R M et al. Optomechanical crystals[J]. Nature, 462, 78-82(2009).
[83] Bochmann J, Vainsencher A, Awschalom D D et al. Nanomechanical coupling between microwave and optical photons[J]. Nature Physics, 9, 712-716(2013).
[84] Mirhosseini M, Sipahigil A, Kalaee M et al. Superconducting qubit to optical photon transduction[J]. Nature, 588, 599-603(2020).
[85] Martínez-Sala R, Sancho J, Sánchez J V et al. Sound attenuation by sculpture[J]. Nature, 378, 241(1995).
[86] Jiang W T, Sarabalis C J, Dahmani Y D et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency[J]. Nature Communications, 11, 1166(2020).
[87] Weaver M J, Duivestein P, Bernasconi A C et al. An integrated microwave-to-optics interface for scalable quantum computing[J]. Nature Nanotechnology, 19, 166-172(2024).
[88] van Thiel T C, Weaver M J, Berto F et al. Optical readout of a superconducting qubit using a piezo-optomechanical transducer[J]. Nature Physics, 21, 401-405(2025).
[89] Balram K C, Davanço M I, Song J D et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits[J]. Nature Photonics, 10, 346-352(2016).
[90] Forsch M, Stockill R, Wallucks A et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state[J]. Nature Physics, 16, 69-74(2020).
[91] Hönl S, Popoff Y, Caimi D et al. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity[J]. Nature Communications, 13, 2065(2022).
[92] Stockill R, Forsch M, Hijazi F et al. Ultra-low-noise microwave to optics conversion in gallium phosphide[J]. Nature Communications, 13, 6583(2022).
[93] Peano V, Brendel C, Schmidt M et al. Topological phases of sound and light[J]. Physical Review X, 5, 031011(2015).
[94] Liu S Y, Yin Z Q, Li T C. Prethermalization and nonreciprocal phonon transport in a levitated optomechanical array[J]. Advanced Quantum Technologies, 3, 1900099(2020).
[95] Ren H J, Shah T, Pfeifer H et al. Topological phonon transport in an optomechanical system[J]. Nature Communications, 13, 3476(2022).
[96] Ma J W, Xi X, Li Y et al. Nanomechanical topological insulators with an auxiliary orbital degree of freedom[J]. Nature Nanotechnology, 16, 576-583(2021).
[97] Cha J, Kim K W, Daraio C. Experimental realization of on-chip topological nanoelectromechanical metamaterials[J]. Nature, 564, 229-233(2018).
[98] Bagheri M, Poot M, Li M et al. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation[J]. Nature Nanotechnology, 6, 726-732(2011).
[99] Kumar P, Bhattacharya M. Single-photon transfer using levitated cavityless optomechanics[J]. Physical Review A, 99, 023811(2019).
[100] Lake D P, Mitchell M, Sukachev D D et al. Processing light with an optically tunable mechanical memory[J]. Nature Communications, 12, 663(2021).
[101] Wallucks A, Marinković I, Hensen B et al. A quantum memory at telecom wavelengths[J]. Nature Physics, 16, 772-777(2020).
[102] Krause A G, Winger M, Blasius T D et al. A high-resolution microchip optomechanical accelerometer[J]. Nature Photonics, 6, 768-772(2012).
[103] Guzmán C F, Kumanchik L, Pratt J et al. High sensitivity optomechanical reference accelerometer over 10 kHz[J]. Applied Physics Letters, 104, 221111(2014).
[104] Pratt J R, Schlamminger S, Seifert F et al. Verification of an in situ calibrated optomechanical accelerometer for use as a strong ground motion seismic reference[J]. Metrologia, 58, 055005(2021).
[105] Li Z, Li X W, Chen D W et al. A chip-scale silicon cavity optomechanical accelerometer with extended frequency range[J]. IEEE Sensors Journal, 24, 31849-31859(2024).
[106] Norgia M, Donati S. Hybrid opto-mechanical gyroscope with injection-interferometer readout[J]. Electronics Letters, 37, 756-758(2001).
[107] Sheikhaleh A, Jafari K, Abedi K. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system[J]. IEEE Sensors Journal, 19, 144-150(2019).
[108] Hassan J N A, Huang W Y, Wang M Y et al. Optomechanical gyroscope based on micro-hemispherical shell and optical ring resonators[J]. IEEE Photonics Journal, 16, 5800617(2024).
[109] Su D Q, Jiang Y, Solano P et al. Optomechanical feedback cooling of a 5 mm long torsional mode[J]. Photonics Research, 11, 2179-2184(2023).
[110] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).
[111] Liu Y L, Mummery J, Zhou J W et al. Gravitational forces between nonclassical mechanical oscillators[J]. Physical Review Applied, 15, 034004(2021).
[112] Brady A J, Chen X, Xia Y et al. Entanglement-enhanced optomechanical sensor array with application to dark matter searches[J]. Communications Physics, 6, 237(2023).
[113] Baker C G, Bowen W P, Cox P et al. Optomechanical dark matter instrument for direct detection[J]. Physical Review D, 110, 043005(2024).
[114] Bengyat O, Di Biagio A, Aspelmeyer M et al. Gravity-mediated entanglement between oscillators as quantum superposition of geometries[J]. Physical Review D, 110, 056046(2024).
[115] Rej E, Cutting R, Depellette J et al. Near-ground-state cooling in electromechanics using measurement-based feedback and a Josephson traveling-wave parametric amplifier[J]. Physical Review Applied, 23, 034009(2025).
[116] Liu J Y, Zhang W Z, Li X et al. The correlated two-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system[J]. International Journal of Theoretical Physics, 55, 4620-4630(2016).
[117] Zhang Y B, Liu J H, Yu Y F et al. Entangling two oscillating mirrors in an optomechanical system via a flying atom[J]. Chinese Physics B, 27, 074209(2018).
[118] Han C M, Chen H, Liu W X et al. Force-dependent induced transparency in an atom-assisted optomechanical system[J]. Optics Communications, 437, 153-159(2019).
[119] El Bir O, El Baz M. Mirrors-light-atoms entanglement in ring optomechanical cavity[J]. Quantum Information Processing, 22, 338(2023).
[120] Purdy T P, Brooks D W C, Botter T et al. Tunable cavity optomechanics with ultracold atoms[J]. Physical Review Letters, 105, 133602(2010).
[121] Camerer S, Korppi M, Jöckel A et al. Realization of an optomechanical interface between ultracold atoms and a membrane[J]. Physical Review Letters, 107, 223001(2011).
[122] Golter D A, Oo T, Amezcua M et al. Optomechanical quantum control of a nitrogen-vacancy center in diamond[J]. Physical Review Letters, 116, 143602(2016).
[123] Gruber A, Dräbenstedt A, Tietz C et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 276, 2012-2014(1997).
[124] Shandilya P K, Lake D P, Mitchell M J et al. Optomechanical interface between telecom photons and spin quantum memory[J]. Nature Physics, 17, 1420-1425(2021).
[125] Kim B, Kurokawa H, Sakai K et al. Diamond optomechanical cavity with a color center for coherent microwave-to-optical quantum interfaces[J]. Physical Review Applied, 20, 044037(2023).
[126] Ohta R, Herpin L, Bastidas V M et al. Rare-earth-mediated optomechanical system in the reversed dissipation regime[J]. Physical Review Letters, 126, 047404(2021).