• Laser & Optoelectronics Progress
  • Vol. 62, Issue 11, 1127009 (2025)
Peiqin Chen1,2, Jindao Tang1,2, Liping Zeng1,2, Hengrui Liang1,2..., Yifei Zhang1,2, Xinyao Xu1,2, Qizhi Cai1,2, Daqian Guo1,2, Haizhi Song2,3, You Wang2,3, Qiang Zhou1,2,4, Jiang Wu1,2, Guangcan Guo2,4 and Guangwei Deng1,2,4,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 2Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan , China
  • 3Southwest Institute of Technical Physics, Chengdu 610041, Sichuan , China
  • 4Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, Anhui , China
  • show less
    DOI: 10.3788/LOP250734 Cite this Article Set citation alerts
    Peiqin Chen, Jindao Tang, Liping Zeng, Hengrui Liang, Yifei Zhang, Xinyao Xu, Qizhi Cai, Daqian Guo, Haizhi Song, You Wang, Qiang Zhou, Jiang Wu, Guangcan Guo, Guangwei Deng. Research Progress of Acoustic Quantum State Regulation and Application Based on the Optomechanics (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127009 Copy Citation Text show less
    References

    [1] Nichols E F, Hull G F. A preliminary communication on the pressure of heat and light radiation[J]. Physical Review (Series I), 13, 307-320(1901).

    [2] Lebedew P. Untersuchungen über die druckkräfte des lichtes[J]. Annalen der Physik, 311, 433-458(1901).

    [3] Dorsel A, McCullen J D, Meystre P et al. Optical bistability and mirror confinement induced by radiation pressure[J]. Physical Review Letters, 51, 1550-1553(1983).

    [4] Braginsky V B, Vyatchanin S P. Low quantum noise tranquilizer for Fabry-Perot interferometer[J]. Physics Letters A, 293, 228-234(2002).

    [5] Braginskiĭ V B, Manukin A B[M]. Measurement of weak forces in physics experiments(1977).

    [6] Bradaschia C, Del Fabbro R, Di Virgilio A et al. The VIRGO project: a wide band antenna for gravitational wave detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 289, 518-525(1990).

    [7] Abramovici A, Althouse W E, Drever R W P et al. LIGO: the laser interferometer gravitational-wave observatory[J]. Science, 256, 325-333(1992).

    [8] Chan J, Alegre T P M, Safavi-Naeini A H et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 478, 89-92(2011).

    [9] Verhagen E, Deléglise S, Weis S et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode[J]. Nature, 482, 63-67(2012).

    [10] Wallraff A, Schuster D, Blais A et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 431, 162-167(2004).

    [11] Pirkkalainen J M, Damskägg E, Brandt M et al. Squeezing of quantum noise of motion in a micromechanical resonator[J]. Physical Review Letters, 115, 243601(2015).

    [12] Barzanjeh S, Redchenko E S, Peruzzo M et al. Stationary entangled radiation from micromechanical motion[J]. Nature, 570, 480-483(2019).

    [13] MacFarlane A G J, Dowling J P, Milburn G J. Quantum technology: the second quantum revolution[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 361, 1655-1674(2003).

    [14] Aspelmeyer M, Kippenberg T J, Marquardt F. Cavity optomechanics[J]. Reviews of Modern Physics, 86, 1391-1452(2014).

    [15] Law C K. Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation[J]. Physical Review A, 51, 2537-2541(1995).

    [16] Nunnenkamp A, Børkje K, Girvin S M. Single-photon optomechanics[J]. Physical Review Letters, 107, 063602(2011).

    [17] Rabl P. Photon blockade effect in optomechanical systems[J]. Physical Review Letters, 107, 063601(2011).

    [18] O’Connell A D, Hofheinz M, Ansmann M et al. Quantum ground state and single-phonon control of a mechanical resonator[J]. Nature, 464, 697-703(2010).

    [19] Clerk A A, Lehnert K W, Bertet P et al. Hybrid quantum systems with circuit quantum electrodynamics[J]. Nature Physics, 16, 257-267(2020).

    [20] Chu Y W, Kharel P, Renninger W H et al. Quantum acoustics with superconducting qubits[J]. Science, 358, 199-202(2017).

    [21] Teufel J D, Donner T, Li D L et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature, 475, 359-363(2011).

    [22] Peterson R W, Purdy T P, Kampel N S et al. Laser cooling of a micromechanical membrane to the quantum backaction limit[J]. Physical Review Letters, 116, 063601(2016).

    [23] Chegnizadeh M, Scigliuzzo M, Youssefi A et al. Quantum collective motion of macroscopic mechanical oscillators[J]. Science, 386, 1383-1388(2024).

    [24] Huang G H, Beccari A, Engelsen N J et al. Room-temperature quantum optomechanics using an ultralow noise cavity[J]. Nature, 626, 512-516(2024).

    [25] Rossi M, Mason D, Chen J X et al. Measurement-based quantum control of mechanical motion[J]. Nature, 563, 53-58(2018).

    [26] Clark J B, Lecocq F, Simmonds R W et al. Sideband cooling beyond the quantum backaction limit with squeezed light[J]. Nature, 541, 191-195(2017).

    [27] Liu Y L, Zhou J W, Mercier de Lépinay L et al. Quantum backaction evading measurements of a silicon nitride membrane resonator[J]. New Journal of Physics, 24, 083043(2022).

    [28] Liu Y L, Liu Q C, Sun H Y et al. Coherent memory for microwave photons based on long-lived mechanical excitations[J]. NPJ Quantum Information, 9, 80(2023).

    [29] Liu Y L, Sun H Y, Liu Q C et al. Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals[J]. Nature Communications, 16, 1207(2025).

    [30] Xia Z W, Tang J D, Jiang Q Y et al. Key technologies for detecting acoustic quantum states in one-dimensional optomechanical crystal nanobeam[J]. Journal of University of Electronic Science and Technology of China, 52, 322-330(2023).

    [31] Wang Y, Shi Z P, Kuang H Y et al. Realization of quantum ground state in an optomechanical crystal cavity[J]. Science China Physics, 66, 124213(2023).

    [32] Liao Q H, Qiu H Y, Cheng S P et al. Intracavity-squeezed cooling in double-Laguerre-Gaussian-cavity optomechanical system[J]. Acta Optica Sinica, 44, 0327001(2024).

    [33] Safavi-Naeini A H, Chan J, Hill J T et al. Observation of quantum motion of a nanomechanical resonator[J]. Physical Review Letters, 108, 033602(2012).

    [34] Manenti R, Kockum A F, Patterson A et al. Circuit quantum acoustodynamics with surface acoustic waves[J]. Nature Communications, 8, 975(2017).

    [35] Moores B A, Sletten L R, Viennot J J et al. Cavity quantum acoustic device in the multimode strong coupling regime[J]. Physical Review Letters, 120, 227701(2018).

    [36] Bienfait A, Zhong Y P, Chang H S et al. Quantum erasure using entangled surface acoustic phonons[J]. Physical Review X, 10, 021055(2020).

    [37] Cohen J D, Meenehan S M, MacCabe G S et al. Phonon counting and intensity interferometry of a nanomechanical resonator[J]. Nature, 520, 522-525(2015).

    [38] Viennot J J, Ma X, Lehnert K W. Phonon-number-sensitive electromechanics[J]. Physical Review Letters, 121, 183601(2018).

    [39] Arrangoiz-Arriola P, Wollack E A, Wang Z Y et al. Resolving the energy levels of a nanomechanical oscillator[J]. Nature, 571, 537-540(2019).

    [40] Cleland A Y, Wollack E A, Safavi-Naeini A H. Studying phonon coherence with a quantum sensor[J]. Nature Communications, 15, 4979(2024).

    [41] Vitali D, Gigan S, Ferreira A et al. Optomechanical entanglement between a movable mirror and a cavity field[J]. Physical Review Letters, 98, 030405(2007).

    [42] Genes C, Ritsch H, Drewsen M et al. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency[J]. Physical Review A, 84, 051801(2011).

    [43] Børkje K, Nunnenkamp A, Girvin S M. Proposal for entangling remote micromechanical oscillators via optical measurements[J]. Physical Review Letters, 107, 123601(2011).

    [44] Palomaki T A, Teufel J D, Simmonds R W et al. Entangling mechanical motion with microwave fields[J]. Science, 342, 710-713(2013).

    [45] Riedinger R, Hong S, Norte R A et al. Non-classical correlations between single photons and phonons from a mechanical oscillator[J]. Nature, 530, 313-316(2016).

    [46] Meesala S, Wood S, Lake D et al. Non-classical microwave-optical photon pair generation with a chip-scale transducer[J]. Nature Physics, 20, 871-877(2024).

    [47] Marinković I, Wallucks A, Riedinger R et al. Optomechanical Bell test[J]. Physical Review Letters, 121, 220404(2018).

    [48] Riedinger R, Wallucks A, Marinković I et al. Remote quantum entanglement between two micromechanical oscillators[J]. Nature, 556, 473-477(2018).

    [49] Brown L S. Squeezed states and quantum-mechanical parametric amplification[J]. Physical Review A, 36, 2463-2466(1987).

    [50] Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical noise squeezing[J]. Physical Review Letters, 67, 699-702(1991).

    [51] Liao J Q, Law C K. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics[J]. Physical Review A, 83, 033820(2011).

    [52] Pontin A, Bonaldi M, Borrielli A et al. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring[J]. Physical Review Letters, 112, 023601(2014).

    [53] Wollman E E, Lei C U, Weinstein A J et al. Quantum squeezing of motion in a mechanical resonator[J]. Science, 349, 952-955(2015).

    [54] Guo Q, Ren X Q, Bai C H et al. Mechanical squeezing in an active-passive-coupled double-cavity optomechanical system via pump modulation[J]. Optics Express, 30, 47070-47081(2022).

    [55] Li Y H, Xu A N, Huang L G et al. Mechanical squeezing via detuning-switched driving[J]. Physical Review A, 107, 033508(2023).

    [56] Youssefi A, Kono S, Chegnizadeh M et al. A squeezed mechanical oscillator with millisecond quantum decoherence[J]. Nature Physics, 19, 1697-1702(2023).

    [57] Khalili F, Danilishin S, Miao H X et al. Preparing a mechanical oscillator in non-Gaussian quantum states[J]. Physical Review Letters, 105, 070403(2010).

    [58] Hong S, Riedinger R, Marinković I et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator[J]. Science, 358, 203-206(2017).

    [59] Xie H, Liao C G, Shang X et al. Phonon blockade in a quadratically coupled optomechanical system[J]. Physical Review A, 96, 013861(2017).

    [60] Huang G F, Deng W W, Tan H T et al. Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity[J]. Physical Review A, 99, 043819(2019).

    [61] Wang M, Yin T S, Sun Z Y et al. Unconventional phonon blockade via atom-photon-phonon interaction in hybrid optomechanical systems[J]. Optics Express, 30, 10251-10268(2022).

    [62] Galinskiy I, Enzian G, Parniak M et al. Nonclassical correlations between photons and phonons of center-of-mass motion of a mechanical oscillator[J]. Physical Review Letters, 133, 173605(2024).

    [63] Carmon T, Rokhsari H, Yang L et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode[J]. Physical Review Letters, 94, 223902(2005).

    [64] Kippenberg T J, Rokhsari H, Carmon T et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity[J]. Physical Review Letters, 95, 033901(2005).

    [65] Rokhsari H, Kippenberg T J, Carmon T et al. Radiation-pressure-driven micro-mechanical oscillator[J]. Optics Express, 13, 5293-5301(2005).

    [66] Hossein-Zadeh M, Vahala K J. Observation of injection locking in an optomechanical rf oscillator[J]. Applied Physics Letters, 93, 191115(2008).

    [67] Bekker C, Kalra R, Baker C et al. Injection locking of an electro-optomechanical device[J]. Optica, 4, 1196-1204(2017).

    [68] Alonso-Tomás D, Arregui G, Mercadé L et al. Cascaded injection locking of optomechanical crystal oscillators[J]. APL Photonics, 9, 116108(2024).

    [69] Kemiktarak U, Durand M, Metcalfe M et al. Mode competition and anomalous cooling in a multimode phonon laser[J]. Physical Review Letters, 113, 030802(2014).

    [70] Tang J D, Xia Z W, Bin Q et al. Dual-driving parametric locking of GHz phonon sources to sub-hertz linewidth in optomechanical systems[J]. Optica, 11, 1103-1112(2024).

    [71] Girvin S M. Circuit QED: superconducting qubits coupled to microwave photons[M]. Quantum machines: measurement and control of engineered quantum systems, 113-256(2014).

    [72] Zhong T, Goldner P. Emerging rare-earth doped material platforms for quantum nanophotonics[J]. Nanophotonics, 8, 2003-2015(2019).

    [73] Yin J, Cao Y, Li Y H et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 356, 1140-1144(2017).

    [74] Takesue H, Dyer S D, Stevens M J et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors[J]. Optica, 2, 832-835(2015).

    [75] Tian L, Wang H L. Optical wavelength conversion of quantum states with optomechanics[J]. Physical Review A, 82, 053806(2010).

    [76] Barzanjeh S, Abdi M, Milburn G J et al. Reversible optical-to-microwave quantum interface[J]. Physical Review Letters, 109, 130503(2012).

    [77] Lauk N, Sinclair N, Barzanjeh S et al. Perspectives on quantum transduction[J]. Quantum Science and Technology, 5, 020501(2020).

    [78] Andrews R W, Peterson R W, Purdy T P et al. Bidirectional and efficient conversion between microwave and optical light[J]. Nature Physics, 10, 321-326(2014).

    [79] Brubaker B M, Kindem J M, Urmey M D et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer[J]. Physical Review X, 12, 021062(2022).

    [80] Kharel P, Chu Y, Mason D et al. Multimode strong coupling in cavity optomechanics[J]. Physical Review Applied, 18, 024054(2022).

    [81] Yoon T, Mason D, Jain V et al. Simultaneous Brillouin and piezoelectric coupling to a high-frequency bulk acoustic resonator[J]. Optica, 10, 110-117(2023).

    [82] Eichenfield M, Chan J, Camacho R M et al. Optomechanical crystals[J]. Nature, 462, 78-82(2009).

    [83] Bochmann J, Vainsencher A, Awschalom D D et al. Nanomechanical coupling between microwave and optical photons[J]. Nature Physics, 9, 712-716(2013).

    [84] Mirhosseini M, Sipahigil A, Kalaee M et al. Superconducting qubit to optical photon transduction[J]. Nature, 588, 599-603(2020).

    [85] Martínez-Sala R, Sancho J, Sánchez J V et al. Sound attenuation by sculpture[J]. Nature, 378, 241(1995).

    [86] Jiang W T, Sarabalis C J, Dahmani Y D et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency[J]. Nature Communications, 11, 1166(2020).

    [87] Weaver M J, Duivestein P, Bernasconi A C et al. An integrated microwave-to-optics interface for scalable quantum computing[J]. Nature Nanotechnology, 19, 166-172(2024).

    [88] van Thiel T C, Weaver M J, Berto F et al. Optical readout of a superconducting qubit using a piezo-optomechanical transducer[J]. Nature Physics, 21, 401-405(2025).

    [89] Balram K C, Davanço M I, Song J D et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits[J]. Nature Photonics, 10, 346-352(2016).

    [90] Forsch M, Stockill R, Wallucks A et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state[J]. Nature Physics, 16, 69-74(2020).

    [91] Hönl S, Popoff Y, Caimi D et al. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity[J]. Nature Communications, 13, 2065(2022).

    [92] Stockill R, Forsch M, Hijazi F et al. Ultra-low-noise microwave to optics conversion in gallium phosphide[J]. Nature Communications, 13, 6583(2022).

    [93] Peano V, Brendel C, Schmidt M et al. Topological phases of sound and light[J]. Physical Review X, 5, 031011(2015).

    [94] Liu S Y, Yin Z Q, Li T C. Prethermalization and nonreciprocal phonon transport in a levitated optomechanical array[J]. Advanced Quantum Technologies, 3, 1900099(2020).

    [95] Ren H J, Shah T, Pfeifer H et al. Topological phonon transport in an optomechanical system[J]. Nature Communications, 13, 3476(2022).

    [96] Ma J W, Xi X, Li Y et al. Nanomechanical topological insulators with an auxiliary orbital degree of freedom[J]. Nature Nanotechnology, 16, 576-583(2021).

    [97] Cha J, Kim K W, Daraio C. Experimental realization of on-chip topological nanoelectromechanical metamaterials[J]. Nature, 564, 229-233(2018).

    [98] Bagheri M, Poot M, Li M et al. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation[J]. Nature Nanotechnology, 6, 726-732(2011).

    [99] Kumar P, Bhattacharya M. Single-photon transfer using levitated cavityless optomechanics[J]. Physical Review A, 99, 023811(2019).

    [100] Lake D P, Mitchell M, Sukachev D D et al. Processing light with an optically tunable mechanical memory[J]. Nature Communications, 12, 663(2021).

    [101] Wallucks A, Marinković I, Hensen B et al. A quantum memory at telecom wavelengths[J]. Nature Physics, 16, 772-777(2020).

    [102] Krause A G, Winger M, Blasius T D et al. A high-resolution microchip optomechanical accelerometer[J]. Nature Photonics, 6, 768-772(2012).

    [103] Guzmán C F, Kumanchik L, Pratt J et al. High sensitivity optomechanical reference accelerometer over 10 kHz[J]. Applied Physics Letters, 104, 221111(2014).

    [104] Pratt J R, Schlamminger S, Seifert F et al. Verification of an in situ calibrated optomechanical accelerometer for use as a strong ground motion seismic reference[J]. Metrologia, 58, 055005(2021).

    [105] Li Z, Li X W, Chen D W et al. A chip-scale silicon cavity optomechanical accelerometer with extended frequency range[J]. IEEE Sensors Journal, 24, 31849-31859(2024).

    [106] Norgia M, Donati S. Hybrid opto-mechanical gyroscope with injection-interferometer readout[J]. Electronics Letters, 37, 756-758(2001).

    [107] Sheikhaleh A, Jafari K, Abedi K. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system[J]. IEEE Sensors Journal, 19, 144-150(2019).

    [108] Hassan J N A, Huang W Y, Wang M Y et al. Optomechanical gyroscope based on micro-hemispherical shell and optical ring resonators[J]. IEEE Photonics Journal, 16, 5800617(2024).

    [109] Su D Q, Jiang Y, Solano P et al. Optomechanical feedback cooling of a 5 mm long torsional mode[J]. Photonics Research, 11, 2179-2184(2023).

    [110] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 116, 061102(2016).

    [111] Liu Y L, Mummery J, Zhou J W et al. Gravitational forces between nonclassical mechanical oscillators[J]. Physical Review Applied, 15, 034004(2021).

    [112] Brady A J, Chen X, Xia Y et al. Entanglement-enhanced optomechanical sensor array with application to dark matter searches[J]. Communications Physics, 6, 237(2023).

    [113] Baker C G, Bowen W P, Cox P et al. Optomechanical dark matter instrument for direct detection[J]. Physical Review D, 110, 043005(2024).

    [114] Bengyat O, Di Biagio A, Aspelmeyer M et al. Gravity-mediated entanglement between oscillators as quantum superposition of geometries[J]. Physical Review D, 110, 056046(2024).

    [115] Rej E, Cutting R, Depellette J et al. Near-ground-state cooling in electromechanics using measurement-based feedback and a Josephson traveling-wave parametric amplifier[J]. Physical Review Applied, 23, 034009(2025).

    [116] Liu J Y, Zhang W Z, Li X et al. The correlated two-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system[J]. International Journal of Theoretical Physics, 55, 4620-4630(2016).

    [117] Zhang Y B, Liu J H, Yu Y F et al. Entangling two oscillating mirrors in an optomechanical system via a flying atom[J]. Chinese Physics B, 27, 074209(2018).

    [118] Han C M, Chen H, Liu W X et al. Force-dependent induced transparency in an atom-assisted optomechanical system[J]. Optics Communications, 437, 153-159(2019).

    [119] El Bir O, El Baz M. Mirrors-light-atoms entanglement in ring optomechanical cavity[J]. Quantum Information Processing, 22, 338(2023).

    [120] Purdy T P, Brooks D W C, Botter T et al. Tunable cavity optomechanics with ultracold atoms[J]. Physical Review Letters, 105, 133602(2010).

    [121] Camerer S, Korppi M, Jöckel A et al. Realization of an optomechanical interface between ultracold atoms and a membrane[J]. Physical Review Letters, 107, 223001(2011).

    [122] Golter D A, Oo T, Amezcua M et al. Optomechanical quantum control of a nitrogen-vacancy center in diamond[J]. Physical Review Letters, 116, 143602(2016).

    [123] Gruber A, Dräbenstedt A, Tietz C et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers[J]. Science, 276, 2012-2014(1997).

    [124] Shandilya P K, Lake D P, Mitchell M J et al. Optomechanical interface between telecom photons and spin quantum memory[J]. Nature Physics, 17, 1420-1425(2021).

    [125] Kim B, Kurokawa H, Sakai K et al. Diamond optomechanical cavity with a color center for coherent microwave-to-optical quantum interfaces[J]. Physical Review Applied, 20, 044037(2023).

    [126] Ohta R, Herpin L, Bastidas V M et al. Rare-earth-mediated optomechanical system in the reversed dissipation regime[J]. Physical Review Letters, 126, 047404(2021).

    Peiqin Chen, Jindao Tang, Liping Zeng, Hengrui Liang, Yifei Zhang, Xinyao Xu, Qizhi Cai, Daqian Guo, Haizhi Song, You Wang, Qiang Zhou, Jiang Wu, Guangcan Guo, Guangwei Deng. Research Progress of Acoustic Quantum State Regulation and Application Based on the Optomechanics (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127009
    Download Citation