Peiqin Chen, Jindao Tang, Liping Zeng, Hengrui Liang, Yifei Zhang, Xinyao Xu, Qizhi Cai, Daqian Guo, Haizhi Song, You Wang, Qiang Zhou, Jiang Wu, Guangcan Guo, Guangwei Deng. Research Progress of Acoustic Quantum State Regulation and Application Based on the Optomechanics (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127009

Search by keywords or author
- Laser & Optoelectronics Progress
- Vol. 62, Issue 11, 1127009 (2025)
![Cooling technologies for realizing quantum ground states. (a) Sideband cooling[21]; (b) laser cooling[8]; (c) active feedback[25]; (d) compressed light[26]](/richHtml/lop/2025/62/11/1127009/img_01.jpg)
Fig. 1. Cooling technologies for realizing quantum ground states. (a) Sideband cooling[21]; (b) laser cooling[8]; (c) active feedback[25]; (d) compressed light[26]
![Studies of acoustic quantum states. (a) Phonon count in optomechanical crystal[37]; (b) acoustic quantum state in eardrum resonator[38]; (c) manipulation of coherent phonon in nanoresonator[40]](/richHtml/lop/2025/62/11/1127009/img_02.jpg)
Fig. 2. Studies of acoustic quantum states. (a) Phonon count in optomechanical crystal[37]; (b) acoustic quantum state in eardrum resonator[38]; (c) manipulation of coherent phonon in nanoresonator[40]
![Regulations of acoustic quantum states: entanglement state. (a) Optomechanical entanglement scheme[41]; (b) distant entanglement scheme[43]; (c) acoustic quantum state coupled with microwave photon in superconducting eardrum[44]; (d) non-classical correlation of photon and phonon in one-dimensional optomechanical crystal[45]](/Images/icon/loading.gif)
Fig. 3. Regulations of acoustic quantum states: entanglement state. (a) Optomechanical entanglement scheme[41]; (b) distant entanglement scheme[43]; (c) acoustic quantum state coupled with microwave photon in superconducting eardrum[44]; (d) non-classical correlation of photon and phonon in one-dimensional optomechanical crystal[45]
![Regulations of acoustic quantum states: squeezed state. (a) Quadrature squeezing of acoustic quantum state[51]; (b) quantum squeezing state in a mechanical resonator[53]; (c) quantum squeezing state via detuning-switched driving[55]; (d) quantum squeezing resonator with ms quantum decoherence time[56]](/Images/icon/loading.gif)
Fig. 4. Regulations of acoustic quantum states: squeezed state. (a) Quadrature squeezing of acoustic quantum state[51]; (b) quantum squeezing state in a mechanical resonator[53]; (c) quantum squeezing state via detuning-switched driving[55]; (d) quantum squeezing resonator with ms quantum decoherence time[56]
![Regulations of acoustic quantum states: Fock state. (a) Preparing of phonon Fock state through a non-Gaussian state light field[57]; (b) preparing of a phonon Fock states through parametric down-conversion[58]; (c) phonon blockade in atom-photon-phonon hybrid system[61]; (d) non-classical correlation between single phonon states and single photons in the SiN eardrum resonator[62]](/Images/icon/loading.gif)
Fig. 5. Regulations of acoustic quantum states: Fock state. (a) Preparing of phonon Fock state through a non-Gaussian state light field[57]; (b) preparing of a phonon Fock states through parametric down-conversion[58]; (c) phonon blockade in atom-photon-phonon hybrid system[61]; (d) non-classical correlation between single phonon states and single photons in the SiN eardrum resonator[62]
![Mode locking of acoustic quantum states. (a) Self-excited oscillation of external radiation pressure[65]; (b) injection locking[66]; (c) multimode competition[69]; (d) dual-mode locking[70]](/Images/icon/loading.gif)
Fig. 6. Mode locking of acoustic quantum states. (a) Self-excited oscillation of external radiation pressure[65]; (b) injection locking[66]; (c) multimode competition[69]; (d) dual-mode locking[70]
![Microwave-optical conversion. (a) Microwave-optical conversion of the eardrum system[78]; (b) microwave-optical conversion of BAR system[81]; (c) microwave-phonon-photon coupling in one-dimensional optomechanical crystal based on AlN[83]; (d) conversion of superconducting qubits to communication optics[84]; (e) microwave-optical conversion based on lithium niobate[87]; (f) microwave-phonon-photon coupling based on GaAs[89]; (g) microwave-optical conversion based on GaAs[90]; (h) microwave-optical conversion based on GaP[91]](/Images/icon/loading.gif)
Fig. 7. Microwave-optical conversion. (a) Microwave-optical conversion of the eardrum system[78]; (b) microwave-optical conversion of BAR system[81]; (c) microwave-phonon-photon coupling in one-dimensional optomechanical crystal based on AlN[83]; (d) conversion of superconducting qubits to communication optics[84]; (e) microwave-optical conversion based on lithium niobate[87]; (f) microwave-phonon-photon coupling based on GaAs[89]; (g) microwave-optical conversion based on GaAs[90]; (h) microwave-optical conversion based on GaP[91]
![Phonon transmission. (a) Array of optomechanical crystal cavity (snowflake shape)[93]; (b) array of suspended microspheres[94]; (c) array of optomechanical crystal cavity (snowflake microporous shape)[95]](/Images/icon/loading.gif)
Fig. 8. Phonon transmission. (a) Array of optomechanical crystal cavity (snowflake shape)[93]; (b) array of suspended microspheres[94]; (c) array of optomechanical crystal cavity (snowflake microporous shape)[95]
![Quantum storage. (a) One-dimensional resonator-optical cavity coupling system[98]; (b) diamond microdisk system[100]; (c) one-dimensional optomechanical crystal system[101]](/Images/icon/loading.gif)
Fig. 9. Quantum storage. (a) One-dimensional resonator-optical cavity coupling system[98]; (b) diamond microdisk system[100]; (c) one-dimensional optomechanical crystal system[101]
![Applications of optomechanical system in quantum precision measurement. (a) One-dimensional optomechanical crystal accelerometer[102]; (b) on-chip optomechanical system accelerometer[105]; (c) gyroscope for electro-opto-mechanical system[106]; (d) gyroscope of microsphere shell combined with ring resonator[108]](/Images/icon/loading.gif)
Fig. 10. Applications of optomechanical system in quantum precision measurement. (a) One-dimensional optomechanical crystal accelerometer[102]; (b) on-chip optomechanical system accelerometer[105]; (c) gyroscope for electro-opto-mechanical system[106]; (d) gyroscope of microsphere shell combined with ring resonator[108]
![Basic physics explorations of optical force systems. (a) Schematic diagram of LIGO structure[110]; (b) gravitational force detection between non-classical mechanical oscillators[111]; (c) design of instruments for direct measurement of light dark matter[113]; (d) quantum ground state cooling using measurement-based feedback and a JTWPA[115]](/Images/icon/loading.gif)
Fig. 11. Basic physics explorations of optical force systems. (a) Schematic diagram of LIGO structure[110]; (b) gravitational force detection between non-classical mechanical oscillators[111]; (c) design of instruments for direct measurement of light dark matter[113]; (d) quantum ground state cooling using measurement-based feedback and a JTWPA[115]
![Hybrid systems. (a) Tunable F-P cavity based on ultracold atom[120]; (b) optomechanical system formed by ultracold atom and thin film[121]; (c) optomechanical regulation of NV color center[122]; (d) NV color center in diamond optomechanical crystal[125]](/Images/icon/loading.gif)

Set citation alerts for the article
Please enter your email address