• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071609 (2020)
Bing Liu, Xuping Wang*, Yuguo Yang, Yanyan Hu, Huajian Yu, and Fengnian Wu
Author Affiliations
  • Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
  • show less
    DOI: 10.3788/LOP57.071609 Cite this Article Set citation alerts
    Bing Liu, Xuping Wang, Yuguo Yang, Yanyan Hu, Huajian Yu, Fengnian Wu. Principles, Devices, and Applications of Beam Deflection Based on Quadratic Electro-Optic Effect of Potassium Tantalate Niobate[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071609 Copy Citation Text show less
    References

    [1] He P, Liu J, Zhao T et al. Compact large size colour 3D dynamic holographic display using liquid crystal display panel[J]. Optics Communications, 432, 54-58(2019).

    [2] Chen Y, Li H J, Qiu Z et al. Improved extended Kalman filter estimation using threshold signal detection with an MEMS electrostatic microscanner[J]. IEEE Transactions on Industrial Electronics, 67, 1328-1336(2020).

    [3] Zhu W B, Yao J, Chao J H et al. Alignment free all solid state angularly multiplexed holographic memory systems[J]. Asian Journal of Physics, 24, 1651-1658(2015).

    [4] Dostalova T, Kasparova M, Karel C et al. Intraoral scanner and stereographic 3D print in orthodontics[J]. Proceedings of SPIE, 10857, 1085706(2019).

    [5] Sherlock B, Warren S C, Alexandrov Y et al. In vivo multiphoton microscopy using a handheld scanner with lateral and axial motion compensation[J]. Journal of Biophotonics, 11, e201700131(2018).

    [6] Shima K, Ikoma S, Uchiyama K et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 10512, 105120C(2018).

    [7] de Loor R. Polygon scanner system for ultra short pulsed laser micro-machining applications[J]. Physics Procedia, 41, 544-551(2013).

    [8] Jaeggi B, Neuenschwander B, Hunziker U et al. Ultra-high-precision surface structuring by synchronizing a galvo scanner with an ultra-short-pulsed laser system in MOPA arrangement[J]. Proceedings of SPIE, 8243, 82430K(2012).

    [9] Ra H, Piyawattanametha W, Taguchi Y et al. Two-dimensional MEMS scanner for dual-axes confocal microscopy[J]. Journal of Microelectromechanical Systems, 16, 969-976(2007).

    [10] Warner A W, White D L, Bonner W A. Acousto-optic light deflectors using optical activity in paratellurite[J]. Journal of Applied Physics, 43, 4489-4495(1972).

    [11] Chen Q B, Chiu Y, Lambeth D N et al. Guided-wave electro-optic beam deflector using domain reversal in LiTaO3[J]. Journal of Lightwave Technology, 12, 1401-1404(1994).

    [12] Djukic D, Roth R, Yardley J T et al. Low-voltage planar-waveguide electrooptic prism scanner in Crystal-Ion-Sliced thin-film LiNbO3[J]. Optics Express, 12, 6159-6164(2004).

    [13] Chiu Y, Stancil D D, Schlesinger T E et al. Electro-optic beam scanner in KTiOPO4[J]. Applied Physics Letters, 69, 3134-3136(1996).

    [14] Lee T, Zook J. Light beam deflection with electrooptic prisms[J]. IEEE Journal of Quantum Electronics, 4, 442-454(1968).

    [15] Scrymgeour D A, Barad Y, Gopalan V et al. Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning[J]. Applied Optics, 40, 6236-6241(2001).

    [16] Lotspeich J F. Electrooptic light-beam deflection[J]. IEEE Spectrum, 5, 45-52(1968).

    [17] Bosco A, Boogert S T, Boorman G E et al. A large aperture electro-optic deflector[J]. Applied Physics Letters, 94, 211104(2009). http://scitation.aip.org/content/aip/journal/apl/94/21/10.1063/1.3144274

    [18] Nashimoto K, Nakamura S, Morikawa T et al. Fabrication of electro-optic Pb(Zr,Ti)O3 heterostructure waveguides on Nb-doped SrTiO3 by solid-phase epitaxy[J]. Applied Physics Letters, 74, 2761-2763(1999).

    [19] Hisatake S, Shibuya K, Kobayashi T. Ultrafast traveling-wave electro-optic deflector using domain-engineered LiTaO3 crystal[J]. Applied Physics Letters, 87, 081101(2005).

    [20] Takagi M, Ishidate T. Anomalous birefringence of cubic BaTiO3[J]. Solid State Communications, 113, 423-426(2000).

    [21] Nakamura R, Kanematsu Y. Femtosecond spectral snapshots based on electronic optical Kerr effect[J]. Review of Scientific Instruments, 75, 636-644(2004).

    [22] Gupta S, Paliwal A, Gupta V et al. Study of birefringence and electro-optic effect in SBN60 thin film[J]. Ferroelectrics, 533, 35-42(2018).

    [23] Imai T, Sasaura M, Nakamura K et al. Crystal growth and electro-optic properties of KTa1-xNbxO3[J]. NTT Technical Review, 5, 1-8(2007).

    [24] Fujiura K, Nakamura K. KTN optical waveguide devices with an extremely large electro-optic effect[J]. Proceedings of SPIE, 5623, 518-532(2005).

    [25] Yagi S. KTN crystals open up new possibilities and applications[J]. NTT Technical Review, 7, 1-5(2009).

    [26] Toyoda S, Fujiura K, Sasaura M et al. Low-driving-voltage electro-optic modulator with novel KTa1-xNbxO3 crystal waveguides[J]. Japanese Journal of Applied Physics, 43, 5862-5866(2004).

    [27] Zhu W B, Chao J H, Wang C et al. Design and implementation of super broadband high speed waveguide switches[J]. Proceedings of SPIE, 9586, 95860W(2015).

    [28] Gong D W, Wang C Z, Wang X P et al. Static volumetric three-dimensional display based on an electric-field-controlled two-dimensional optical beam scanner[J]. Applied Optics, 58, 7067-7072(2019).

    [29] Sawaki M, Motai H. Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance[J]. NTT Technical Review, 1, 56-58(2003).

    [30] Miyazu J, Imai T, Toyoda S et al. New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals[J]. Applied Physics Express, 4, 111501(2011).

    [31] Nakamura K. Optical beam scanner using Kerr effect and space-charge-controlled electrical conduction in KTa1-xNbxO3 crystal[J]. NTT Technical Review, 5, 1-8(2007).

    [32] Imai T, Yagi S, Toyoda S et al. Fast varifocal lenses based on KTa1-xNbxO3 (KTN) single crystal[J]. NTT Technical Review, 7, 1-5(2009).

    [33] Okabe Y, Sasaki Y, Ueno M et al. 200 kHz swept light source equipped with KTN deflector for optical coherence tomography[J]. Electronics Letters, 48, 201-202(2012).

    [34] Chang Y C, Wang C, Yin S et al. Giant electro-optic effect in nanodisordered KTN crystals[J]. Optics Letters, 38, 4574-4577(2013).

    [35] Chang Y C, Zhu W, Chao J H et al. Super broadband ultrafast waveguide switches based on dynamic waveguiding effect[J]. Proceedings of SPIE, 9200, 92000X(2014).

    [36] Chang Y C, Wang C, Yin S et al. Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals[J]. Optics Express, 21, 17760-17768(2013).

    [37] Zhu W B, Chao J H, Chen C J et al. Multi-scanning mechanism enabled rapid non-mechanical multi-dimensional KTN beam deflector[J]. Proceedings of SPIE, 9958, 99580R(2016).

    [38] Zhu W B, Chao J H, Chen C J et al. Three order increase in scanning speed of space charge-controlled KTN deflector by eliminating electric field induced phase transition in nanodisordered KTN[J]. Scientific Reports, 6, 33143(2016).

    [39] Zhu W B, Chao J H, Chen C J et al. Photon excitation enabled large aperture space-charge-controlled potassium tantalate niobate (KTN) beam deflector[J]. Applied Physics Letters, 112, 132901(2018).

    [40] Chen C J, Zhu W B, Chao J H et al. Study of thermal and spatial dependent electric field-induced phase transition in relaxor ferroelectric crystals using Raman spectroscopy[J]. Journal of Alloys and Compounds, 804, 35-41(2019).

    [41] Zhu W B, Chao J H, Chen C J et al. New functionalities of potassium tantalate niobate deflectors enabled by the coexistence of pre-injected space charge and composition gradient[J]. Journal of Applied Physics, 122, 133111(2017).

    [42] di Mei F. Exploring scale-free optics in nanodisordered crystals[D]. Rome: Sapienza University of Rome, 15-22(2016).

    [43] DelRe E, di Mei F, Parravicini J et al. Subwavelength anti-diffracting beams propagating over more than 1, 000 Rayleigh lengths[J]. Nature Photonics, 9, 228-232(2015).

    [44] Pierangeli D. Ferraro M,di Mei F, et al. Super-crystals in composite ferroelectrics[J]. Nature Communications, 7, 10674(2016).

    [45] Wang X P, Liu B, Yang Y G et al. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal[J]. Applied Physics Letters, 105, 051910(2014).

    [46] Wang X P, Liu B, Yang Y G et al. Growth of KTN crystals by double crucible Czochralski method[J]. Materials Research Innovations, 18, 334-339(2014). http://www.tandfonline.com/doi/abs/10.1179/175355513X13807989189200

    [47] Wang X P, Liu B, Yang Y G et al. Preparation and laser modulation investigation of quadratic electro-optical crystal Cu: KTN with gradient refractivity effect[J]. Journal of Crystal Growth, 468, 356-360(2017).

    [48] Liu B, Zhang X N, Yang Y G et al. Influence of copper oxide on properties of potassium tantalate niobate single crystals[J]. Ceramics International, 42, 15091-15093(2016).

    [49] Tan P, Tian H, Hu C P et al. Temperature field driven polar nanoregions in KTa1-xNbxO3[J]. Applied Physics Letters, 109, 252904(2016).

    [50] Tian H, Yao B, Hu C P et al. Impact of polar nanoregions on the quadratic electro-optic effect in K0.95Na0.05Ta1-xNbxO3 crystals near the Curie temperature[J]. Applied Physics Express, 7, 062601(2014).

    [51] Tian H, Yao B, Wang L et al. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3 single crystal near the Para-ferroelectric phase boundary[J]. Scientific Reports, 5, 13751(2015).

    [52] Nakamura K, Miyazu J, Sasaura M et al. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3[J]. Applied Physics Letters, 89, 131115(2006).

    [53] Nakamura K, Miyazu J, Sasaki Y et al. Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction[J]. Journal of Applied Physics, 104, 013105(2008).

    [54] Geusic J E. Kurtz S K, van Uitert L G, et al. Electro-optic properties of some ABO3 perovskites in the paraelectric phase[J]. Applied Physics Letters, 4, 141-143(1964).

    [55] Fowler V J, Schlafer J. A survey of laser beam deflection techniques[J]. Applied Optics, 5, 1675-1682(1966).

    [56] Many A, Rakavy G. Theory of transient space-charge-limited currents in solids in the presence of trapping[J]. Physical Review, 126, 1980-1988(1962).

    [57] Chen F S, Geusic J E, Kurtz S K et al. Light modulation and beam deflection with potassiumtantalate-niobate crystals[J]. Journal of Applied Physics, 37, 388-398(1966).

    [58] Miyazu J, Sasaki Y, Naganuma K et al. 400 kHz beam scanning using KTa1-xNbxO3 crystals. [C]∥Conference on Lasers and Electro-Optics 2010, San Jose, California. Washington, D.C.: OSA, CTuG5(2010).

    [59] Sasaura M, Imai T, Kohda H et al. TSSG pulling and LPE growth of KTaxNb1-xO3 for optical waveguides[J]. Journal of Crystal Growth, 275, e2099-e2103(2005).

    [60] Dugan A F, Doyle W M, Sutton P M. KTN concentration gradient light beam deflector[J]. Applied Optics, 7, 556-558(1968).

    [61] Tian H, Tan P, Meng X D et al. Variable gradient refractive index engineering: design, growth and electro-deflective application of KTa1-xNbxO3[J]. Journal of Materials Chemistry C, 3, 10968-10973(2015).

    [62] Rupprecht G, Bell R O. Dielectric constant in paraelectric perovskites[J]. Physical Review, 135, A748(1964).

    [63] Chao J H, Zhu W B, Chen C J et al. High speed non-mechanical two-dimensional KTN beam deflector enabled by space charge and temperature gradient deflection[J]. Optics Express, 25, 15481-15492(2017).

    [64] Bechtold P. Electro-optic and acousto-optic laser beam scanners[J]. Physics Procedia, 56, 29-39(2014).

    [65] Naganuma K, Miyazu J, Yagi S. High-resolution KTN optical beam scanner[J]. NTT Technical Review, 7, 1-6(2009).

    [66] Sakamoto T, Toyoda S, Ueno M et al. High-speed optical beam scanning using KTN crystal. [C]∥IEEE CPMT Symposium Japan 2014, November 4-6, 2014. Kyoto, Japan. IEEE, 173-176(2014).

    [67] Gumennik A, Kurzweil-Segev Y, Agranat A J. Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment[J]. Optical Materials Express, 1, 332-343(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ome-1-3-332

    [68] DelRe E, Spinozzi E, Agranat A J et al. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics[J]. Nature Photonics, 5, 39-42(2011).

    [69] Ohta R, Zushi J T, Ariizumi T et al. Order-disorder behavior of ferroelectric phase transition of KTa1-xNbxO3 probed by Brillouin scattering[J]. Applied Physics Letters, 98, 092909(2011).

    [70] Itoh T, Sasaura M, Toyoda S et al. High-frequency response of electro-optic single crystal KTa1-xNbxO3/ in paraelectric phase. [C]∥Quantum Electronics and Laser Science Conference, May 22-27, Baltimore, Maryland, United States, JTuC36(2005).

    [71] Tatsumi S, Sasaki Y, Toyoda S et al. 700 kHz beam scanning using electro-optic KTN planar optical deflector[J]. Proceedings of SPIE, 9744, 97440L(2016).

    [72] Imai T, Ueno M, Sasaki Y et al. Analyses of optical rays in KTN optical beam deflectors for device design[J]. Applied Optics, 56, 7277-7285(2017).

    [73] Sasaki Y, Okabe Y, Ueno M et al. Resolution enhancement of KTa1-xNbxO3 electro-optic deflector by optical beam shaping[J]. Applied Physics Express, 6, 102201(2013).

    [74] Yagi S, Fujiura K. Electro-optic KTN devices[J]. Physics Procedia, 56, 40-47(2014).

    [75] Milek J T, Neuberger M. Principles of electrooptic modulation[M]. ∥Linear electrooptic modular materials. Boston, M A: Springer, 5-14(1972).

    [76] Foshee J, Tang S N, Tang Y J et al. A novel high-speed electro-optic beam scanner based on KTN crystals[J]. Proceedings of SPIE, 6709, 670908(2007).

    [77] Toyoda S, Ueno M, Yagi S et al. First estimation of power consumption of KTax Nb1-xO3 crystal upon application of high voltage under high frequency[J]. Applied Physics Express, 6, 122601(2013). http://adsabs.harvard.edu/abs/2013APExp...6l2601T

    [78] Sakamoto T, Toyoda S, Ueno M et al. 350 kHz large-angle scanning of laser light using KTa1-xNbxO3 optical deflector[J]. Electronics Letters, 50, 1965-1966(2014).

    [79] Imai T, Miyazu J, Kobayashi J. Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors[J]. Optical Materials Express, 4, 976-981(2014). http://www.opticsinfobase.org/abstract.cfm?uri=ome-4-5-976

    [80] Huang C H, Sasaki Y, Miyazu J et al. Trapped charge density analysis of KTN crystal by beam path measurement[J]. Optics Express, 22, 7783-7789(2014).

    [81] Wemple S H. DiDomenico M, Jayaraman A. Electron scattering in perovskite-oxide ferroelectric semiconductors[J]. Physical Review, 180, 547(1969).

    [82] Imai T, Miyazu J, Kobayashi J. Charge distributions in KTa1-xNbxO3 optical beam deflectors formed by voltage application[J]. Optics Express, 22, 14114-14126(2014).

    [83] Burns G, Dacol F H. Crystalline ferroelectrics with glassy polarization behavior[J]. Physical Review B, 28, 2527(1983).

    [84] Dul'Kin E, Kojima S, Roth M. Characteristic temperatures and field effect in KTa1-xNbxO3 relaxor crystals seen via acoustic emission[J]. Europhysics Letters, 97, 57004(2012).

    [85] Tian H, Jia J S, Zhou Z X et al. Large electrostrictive effect in K0.99Li0.01Ta1-xNbxO3 lead-free single crystals[J]. Physica Status Solidi A, 209, 2291-2294(2012).

    [86] di Mei F, Falsi L, Flammini M et al. Giant broadband refraction in the visible in a ferroelectric perovskite[J]. Nature Photonics, 12, 734-738(2018).

    [87] di Mei F, Pierangeli D, Parravicini J et al. Observation of diffraction cancellation for nonparaxial beams in the scale-free-optics regime[J]. Physical Review A, 92, 013835(2015).

    [88] Imai T, Toyoda S, Miyazu J et al. 53(9S): 09PB02[J]. field-induced phase transition in KTa1-xNbxO3 optical beam deflectors. Japanese Journal of Applied Physics(2014).

    [89] Knauss L A, Pattnaik R, Toulouse J. Polarization dynamics in the mixed ferroelectric KTa1-xNbxO3[J]. Physical Review B, 55, 3472(1997).

    [90] Chen C J, Chao J H, Lee Y G et al. Enhanced electro-optic beam deflection of relaxor ferroelectric KTN crystals by electric-field-induced high permittivity[J]. Optics Letters, 44, 5557-5560(2019).

    [91] Jin L, Luo W T, Jing R Y et al. High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa (Zn1/3Nb2/3)O3 solid solutions[J]. Ceramics International, 45, 5518-5524(2019).

    [92] Pattnaik R, Toulouse J. New dielectric resonances in mesoscopic ferroelectrics[J]. Physical Review Letters, 79, 4677(1997).

    [93] Meng X D, Tian H, Tan P et al. Strong electromechanical coupling in paraelectric KTa1-xNbxO3 crystals[J]. Journal of the American Ceramic Society, 100, 5220-5225(2017).

    [94] Yuzo S, Toyoda S, Sakamoto T et al. Electro-optic KTN deflector stabilized with 405-nm light irradiation for wavelength-swept light source[J]. Proceedings of SPIE, 10100, 101000H(2017).

    [95] Imai T, Inagaki T, Miyazu J et al. A varifocal lens using an electrooptic KTa1-xNbxO3 crystal with a microsecond order response time[J]. Transactions of the Japan Institute of Electronics Packaging, 7, 39-45(2014).

    [96] Inagaki T, Imai T, Miyazu J et al. Polarization independent varifocal lens using KTN crystals[J]. Optics Letters, 38, 2673-2675(2013).

    [97] Michael A, Kwok C Y. Piezoelectric micro-lens actuator[J]. Sensors and Actuators A: Physical, 236, 116-129(2015).

    [98] Mermillod-Blondin A. McLeod E, Arnold C B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens[J]. Optics Letters, 33, 2146-2148(2008).

    [99] Mugele F, Baret J C. Electrowetting: from basics to applications[J]. Journal of Physics: Condensed Matter, 17, R705-R774(2005).

    [100] Kawamura S, Imai T, Sakamoto T. Optical devices using KTN single crystals and their applications[J]. Journal of the Japanese Association for Crystal Growth, 43, 155-160(2016).

    [101] Kawamura S, Imai T, Miyazu J et al. 25-fold increase in lens power of a KTN varifocal lens by employing an octagonal structure[J]. Applied Optics, 54, 4197-4201(2015).

    [102] Zhu W B, Chao J H, Chen C J et al. Nanosecond KTN varifocal lens without electric field induced phase transition[J]. Proceedings of SPIE, 10382, 103820R(2017).

    [103] Chang Y C, Yin S Z. Dynamic and tunable optical waveguide based on KTN electro-optic crystals[J]. Proceedings of SPIE, 8497, 84970J(2012).

    [104] Sasaki Y, Yagi S, Kobayashi J et al. Microsecond optical switching of five channels by KTN electro-optic deflector[J]. Electronics Letters, 50, 1540-1541(2014).

    [105] Gong D W, Liang Y G, Ou W J et al. Electric-field-controlled optical switch using Kerr effect and gradient of the composition ratio Nb/(Ta+Nb)[J]. Materials Research Bulletin, 75, 7-12(2016).

    [106] Zhang X, Yang Q X, Liu H L et al. Switching effects of spontaneously formed superlattices in relaxor ferroelectrics[J]. Optical Materials Express, 9, 4081-4089(2019).

    [107] Ohmi M, Fukuda A, Miyazu J et al. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector[J]. Applied Physics Express, 8, 027001(2015).

    [108] Ohmi M, Shinya Y, Miyazu J et al. High-speed time-domain en face optical coherence tomography system using KTN optical beam deflector[J]. Optics and Photonics Journal, 9, 53-59(2019).

    [109] Okabe Y, Sugawa Y, Ohmi M et al. Three-dimensional high-speed optical coherence tomography system using KTN swept light source[J]. Electronics Letters, 49, 981-982(2013).

    [110] Sasaki Y. High-speed spectrometer using KTN optical beam scanner[J]. NTT Technical Review, 7, 1-5(2009).

    [111] Isobe K, Kawano H, Takeda T et al. Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy[J]. Biomedical Optics Express, 3, 1594-1608(2012).

    [112] Isobe K, Kawano H, Kumagai A et al. Implementation of spatial overlap modulation nonlinear optical microscopy using an electro-optic deflector[J]. Biomedical Optics Express, 4, 1937-1945(2013).

    [113] Yin S S, Chao J H, Zhu W B et al. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector[J]. Proceedings of SPIE, 10382, 103820P(2017).

    [114] Xu J, Zhi Y N, Wang X P et al. A large-angle high speed scanner based on electro-optic crystal for Fresnel telescope synthetic aperture imaging ladar[J]. Proceedings of SPIE, 8520, 85200V(2012).

    [115] Tie D X. Application of KTN electro-optic crystal in 3D imaging laser radar[D]. Beijing: University of Chinese Academy of Sciences, 17-23(2018).

    [116] Du R. The study of axial random-access laser scanning scheme in two photon microscopy[D]. Wuhan: Huazhong University of Science and Technology, 60-89(2011).

    Bing Liu, Xuping Wang, Yuguo Yang, Yanyan Hu, Huajian Yu, Fengnian Wu. Principles, Devices, and Applications of Beam Deflection Based on Quadratic Electro-Optic Effect of Potassium Tantalate Niobate[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071609
    Download Citation