[1] SONG W J, KONG L G, TAO Q Y, et al. High‐resolution van der Waals stencil lithography for 2D transistors[J]. Small, 17, 2101209(2021).
[2] SHI W, KAHN S, JIANG L L, et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures[J]. Nature Electronics, 3, 99-105(2020).
[3] SHEN X N, WANG H M, YU T. How do the electron beam writing and metal deposition affect the properties of graphene during device fabrication?[J]. Nanoscale, 5, 3352-3358(2013).
[4] KATAGIRI Y, NAKAMURA T, ISHII A, et al. Gate-tunable atomically thin lateral MoS2 schottky junction patterned by electron beam[J]. Nano Letters, 16, 3788-3794(2016).
[5] XIE X J, KANG J H, CAO W, et al. Designing artificial 2D crystals with site and size controlled quantum dots[J]. Scientific Reports, 7, 9965(2017).
[6] WOOD J D, WELLS S A, JARIWALA D, et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation[J]. Nano Letters, 14, 6964-6970(2014).
[7] TAO L, CINQUANTA E, CHIAPPE D, et al. Silicene field-effect transistors operating at room temperature[J]. Nature Nanotechnology, 10, 227-231(2015).
[8] GAMMELGAARD L, CARIDAD J M, CAGLIANI A, et al. Graphene transport properties upon exposure to PMMA processing and heat treatments[J]. 2D Materials, 1, 035005(2014).
[9] KANG S, MOVVA H C P, SANNE A, et al. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors[J]. Journal of Applied Physics, 119, 124502(2016).
[10] LEE J H, KIM Y, SHIN H J, et al. Clean transfer of graphene and its effect on contact resistance[J]. Applied Physics Letters, 103, 103104(2013).
[11] ZAN R, RAMASSE Q M, JALIL R, et al. Control of radiation damage in MoS2 by graphene encapsulation[J]. ACS Nano, 7, 10167-10174(2013).
[12] ALLAIN A, KANG J H, BANERJEE K, et al. Electrical contacts to two-dimensional semiconductors[J]. Nature Materials, 14, 1195-1205(2015).
[13] XU Y, CHENG C, DU S C, et al. Contacts between two- and three-dimensional materials: ohmic, schottky, and
[14] DESHMUKH M M, RALPH D C, THOMAS M, et al. Nanofabrication using a stencil mask[J]. Applied Physics Letters, 75, 1631-1633(1999).
[15] BAO W Z, LIU G, ZHAO Z, et al. Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices[J]. Nano Research, 3, 98-102(2010).
[16] ZHANG H M, GUO X J, NIU W, et al. Multilayer Si shadow mask processing of wafer-scale MoS2 devices[J]. 2D Materials, 7, 025019(2020).
[17] LISHCHYNSKA M, BOURENKOV V, VAN DEN BOOGAART M A F, et al. Predicting mask distortion, clogging and pattern transfer for stencil lithography[J]. Microelectronic Engineering, 84, 42-53(2007).
[18] VAZQUEZ-MENA O, VILLANUEVA L G, SAVU V, et al. Analysis of the blurring in stencil lithography[J]. Nanotechnology, 20, 415303(2009).
[19] LIU Y, GUO J, ZHU E B, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J]. Nature, 557, 696-700(2018).
[20] HU Z Z, ZHANG X J, XIE C, et al. Doping dependent crystal structures and optoelectronic properties of n-type CdSe: Ga nanowries[J]. Nanoscale, 3, 4798-4803(2011).
[22] MIRABELLI G, MCGEOUGH C, SCHMIDT M, et al. Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2[J]. Journal of Applied Physics, 120, 125102(2016).
[23] WANG G C, BAO L H, PEI T F, et al. Introduction of interfacial charges to black phosphorus for a family of planar devices[J]. Nano Letters, 16, 6870-6878(2016).