• Photonics Research
  • Vol. 10, Issue 3, 719 (2022)
Alessandro Tuniz1、2、*, Markus A. Schmidt3、4, and Boris T. Kuhlmey1
Author Affiliations
  • 1Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, NSW 2006, Australia
  • 2The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
  • 3Leibniz Institute of Photonic Technology (IPHT Jena), 07745 Jena, Germany
  • 4Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, 07743 Jena, Germany
  • show less
    DOI: 10.1364/PRJ.449067 Cite this Article Set citation alerts
    Alessandro Tuniz, Markus A. Schmidt, Boris T. Kuhlmey. Influence of non-Hermitian mode topology on refractive index sensing with plasmonic waveguides[J]. Photonics Research, 2022, 10(3): 719 Copy Citation Text show less
    References

    [1] X. Guo. Surface plasmon resonance based biosensor technique: a review. J. Biophoton., 5, 483-501(2012).

    [2] T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, B. Lee. Plasmonic nanostructures for nano-scale bio-sensing. Sensors, 11, 10907-10929(2011).

    [3] A. F. Coskun, A. E. Cetin, B. C. Galarreta, D. A. Alvarez, H. Altug, A. Ozcan. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci. Rep., 4, 6789(2014).

    [4] M. A. Beuwer, M. W. Prins, P. Zijlstra. Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. Nano Lett., 15, 3507-3511(2015).

    [5] H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, H. Lee. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol., 32, 490-495(2014).

    [6] E. Kretschmann, H. Raether. Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A, 23, 2135-2136(1968).

    [7] A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A, 216, 398-410(1968).

    [8] M. Chamanzar, Z. Xia, S. Yegnanarayanan, A. Adibi. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Opt. Express, 21, 32086-32098(2013).

    [9] F. Peyskens, A. Dhakal, P. Van Dorpe, N. Le Thomas, R. Baets. Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform. ACS Photon., 3, 102-108(2016).

    [10] P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, A. Cusano. Lab on fiber technology for biological sensing applications. Laser Photon. Rev., 10, 922-961(2016).

    [11] A. Tuniz, M. A. Schmidt. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics, 7, 1279-1298(2018).

    [12] R. Harris, J. S. Wilkinson. Waveguide surface plasmon resonance sensors. Sens. Actuators B, 29, 261-267(1995).

    [13] J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors. Sens. Actuators B, 54, 3-15(1999).

    [14] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407, 3883-3897(2015).

    [15] E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, A. François. Plasmonic fiber optic refractometric sensors: from conventional architectures to recent design trends. Sensors, 17, 12(2017).

    [16] Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L.-K. Ang, W. Knoll, L. Wu. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater., 7, 1801433(2019).

    [17] J. Dostalek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindova, J. Špirková, J. Škvor, J. Schröfel. Surface plasmon resonance biosensor based on integrated optical waveguide. Sens. Actuators B, 76, 8-12(2001).

    [18] A. Tuniz, T. Wieduwilt, M. A. Schmidt. Tuning the effective PT phase of plasmonic eigenmodes. Phys. Rev. Lett., 123, 213903(2019).

    [19] M. Piliarik, J. Homola, Z. Manıková, J. Čtyroký. Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens. Actuators B, 90, 236-242(2003).

    [20] T. Wieduwilt, K. Kirsch, J. Dellith, R. Willsch, H. Bartelt. Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance. Plasmonics, 8, 545-554(2013).

    [21] T. Wieduwilt, A. Tuniz, S. Linzen, S. Goerke, J. Dellith, U. Hübner, M. A. Schmidt. Ultrathin niobium nanofilms on fiber optical tapers–a new route towards low-loss hybrid plasmonic modes. Sci. Rep., 5, 17060(2015).

    [22] A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, M. C. Large. Side-hole fiber sensor based on surface plasmon resonance. Opt. Lett., 34, 3890-3892(2009).

    [23] A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, A. E. Miroshnichenko. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett., 43, 891-894(2018).

    [24] F. Gu, H. Zeng, L. Tong, S. Zhuang. Metal single-nanowire plasmonic sensors. Opt. Lett., 38, 1826-1828(2013).

    [25] D. Nau, A. Seidel, R. Orzekowsky, S.-H. Lee, S. Deb, H. Giessen. Hydrogen sensor based on metallic photonic crystal slabs. Opt. Lett., 35, 3150-3152(2010).

    [26] C. Caucheteur, T. Guo, F. Liu, B.-O. Guan, J. Albert. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat. Commun., 7, 13371(2016).

    [27] A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, D. R. Smith. Directional coupling between dielectric and long-range plasmon waveguides. New J. Phys., 11, 015002(2009).

    [28] A. Tuniz, M. A. Schmidt. Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips. Opt. Express, 24, 7507-7524(2016).

    [29] D. K. Wu, B. T. Kuhlmey, B. J. Eggleton. Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett., 34, 322-324(2009).

    [30] H. Lee, M. Schmidt, P. Uebel, H. Tyagi, N. Joly, M. Scharrer, P. St.J. Russell. Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. Opt Express, 19, 8200-8207(2011).

    [31] D. K. Wu, K. J. Lee, V. Pureur, B. T. Kuhlmey. Performance of refractive index sensors based on directional couplers in photonic crystal fibers. J. Lightwave Technol., 31, 3500-3510(2013).

    [32] K. J. Lee, X. Liu, N. Vuillemin, R. Lwin, S. G. Leon-Saval, A. Argyros, B. T. Kuhlmey. Refractive index sensor based on a polymer fiber directional coupler for low index sensing. Opt. Express, 22, 17497-17507(2014).

    [33] H. Alaeian, J. A. Dionne. Non-Hermitian nanophotonic and plasmonic waveguides. Phys. Rev. B, 89, 075136(2014).

    [34] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752-762(2017).

    [35] M.-A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [36] Q. Zhong, M. Khajavikhan, D. N. Christodoulides, R. El-Ganainy. Winding around non-Hermitian singularities. Nat. Commun., 9, 4808(2018).

    [37] Ş. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [38] J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, B. Kanté. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).

    [39] C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, P. K. Chu. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express, 25, 14227-14237(2017).

    [40] M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W.-H. Ng, H. Ebendorff-Heidepriem, D. Abbott. Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express, 26, 30347-30361(2018).

    [41] A. V. Dyshlyuk, O. B. Vitrik, U. A. Eryusheva. Waveguide-based refractometers using bulk, long-and short-range surface plasmon modes: comparative study. J. Lightwave Technol., 36, 5319-5326(2018).

    [42] B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, D. Ohnishi. Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Appl. Phys. Lett., 100, 111108(2012).

    [43] P. Berini. Long-range surface plasmon polaritons. Adv. Opt. Photon., 1, 484-588(2009).

    [44] J. Burke, G. Stegeman, T. Tamir. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B, 33, 5186-5201(1986).

    [45] I. M. White, X. Fan. On the performance quantification of resonant refractive index sensors. Opt. Express, 16, 1020-1028(2008).

    [46] S. Pumpe, M. Chemnitz, J. Kobelke, M. A. Schmidt. Monolithic optofluidic mode coupler for broadband thermo-and piezo-optical characterization of liquids. Opt. Express, 25, 22932-22946(2017).

    [47] I. H. Malitson. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. B, 55, 1205-1209(1965).

    [48] A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 37, 5271-5283(1998).

    [49] Z. Zhang, Y. Shi, B. Bian, J. Lu. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt. Express, 16, 1915-1922(2008).

    [50] A. K. Taras, A. Tuniz, M. A. Bajwa, V. Ng, J. M. Dawes, C. G. Poulton, C. M. De Sterke. Shortcuts to adiabaticity in waveguide couplers–theory and implementation. Adv. Phys. X, 6, 1894978(2021).

    [51] J. Khurgin, Y. Sebbag, E. Edrei, R. Zektzer, K. Shastri, U. Levy, F. Monticone. Emulating exceptional-point encirclements using imperfect (leaky) photonic components: asymmetric mode-switching and omni-polarizer action. Optica, 8, 563-569(2021).

    [52] A. W. Snyder, J. Love. Optical Waveguide Theory(2012).

    [53] S.-L. Chuang. A coupled mode formulation by reciprocity and a variational principle. J. Lightwave Technol., 5, 5-15(1987).

    [54] . Wave Optics Module User’s Guide, COMSOL Multiphysics v. 5.3, 47-48(2017).

    [55] A. Hassani, M. Skorobogatiy. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B, 24, 1423-1429(2007).

    [56] J. Wiersig. Prospects and fundamental limits in exceptional point-based sensing. Nat. Commun., 11, 2454(2020).

    [57] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [58] Y. J. Zhang, H. Kwon, M.-A. Miri, E. Kallos, H. Cano-Garcia, M. S. Tong, A. Alu. Noninvasive glucose sensor based on parity-time symmetry. Phys. Rev. Appl., 11, 044049(2019).

    [59] B. Fan, F. Liu, X. Wang, Y. Li, K. Cui, X. Feng, Y. Huang. Integrated sensor for ultra-thin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide. Appl. Phys. Lett., 102, 061109(2013).

    [60] K. Luke, Y. Okawachi, M. R. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).

    [61] E. Chatzianagnostou, A. Manolis, G. Dabos, D. Ketzaki, A. Miliou, N. Pleros, L. Markey, J.-C. Weeber, A. Dereux, B. Chmielak, A.-L. Giesecke, C. Porschatis, P. J. Cegielski, D. Tsiokos. Scaling the sensitivity of integrated plasmo-photonic interferometric sensors. ACS Photon., 6, 1664-1673(2019).

    [62] A. D. Gomes, J. T. Zhao, A. Tuniz, M. A. Schmidt. Direct observation of modal hybridization in nanofluidic fiber. Opt. Mater. Express, 11, 559-568(2021).

    Alessandro Tuniz, Markus A. Schmidt, Boris T. Kuhlmey. Influence of non-Hermitian mode topology on refractive index sensing with plasmonic waveguides[J]. Photonics Research, 2022, 10(3): 719
    Download Citation