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We evaluate the sensing properties of plasmonic waveguide sensors by calculating their resonant transmission
spectra in different regions of the non-Hermitian eigenmode space. We elucidate the pitfalls of using modal
dispersion calculations in isolation to predict plasmonic sensor performance, which we address by using a simple
model accounting for eigenmode excitation and propagation. Our transmission calculations show that resonant
wavelength and spectral width crucially depend on the length of the sensing region, so that no single criterion
obtained from modal dispersion calculations alone can be used as a proxy for sensitivity. Furthermore, we find
that the optimal detection limits occur where directional coupling is supported, where the narrowest spectra
occur. Such narrow spectral features can only be measured by filtering out all higher-order modes at the
output, e.g., via a single-mode waveguide. Our calculations also confirm a characteristic square root dependence
of the eigenmode splitting with respect to the permittivity perturbation at the exceptional point, which we show
can be identified through the sensor beat length at resonance. This work provides a convenient framework
for designing and characterizing plasmonic waveguide sensors when comparing them with experimental
measurements. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.449067

1. INTRODUCTION

Surface plasmon polariton resonant sensors [1] have found
wide-ranging applications, particularly for nanoscale biosensing
[2], where they allow label-free optical detection of binding
events between molecules (e.g., antibodies and antigens [3]),
protein interactions [4] or exosomes [5]. The original prism-
based geometries such as the Kretschmann [6] and Otto [7]
configurations are versatile and precise, but rely on free-space
optics and are thus relatively bulky. Surface plasmons lend
themselves to extreme confinement of light, which could be
implemented in very small footprint devices, motivating exten-
sive research investigating strategies for integrating surface plas-
mon sensors with chip-based [8,9] and fiber-based [10,11]
circuitry.

Experimental and theoretical work on waveguide-based
plasmonic sensors goes through several decades [12,13]: we re-
fer the reader to Refs. [14–16] for a selection of recent reviews.
Such devices are commonly composed of rectangular [9,17],
cylindrical [18–21], or microstructured [22,23] dielectric wave-
guides (e.g., composed of silica [21], PMMA [22], or silicon

nitride [9]), adjacent to one or several metallic nanostructures
(e.g., nanofilms [21,23], nanowires [24], and nanoantennas
[9]), which are in contact with a region to be sensed (e.g., a
liquid [21] or a gas [25,26]). Because dielectric waveguides and
plasmonic films typically differ by orders of magnitude in lateral
dimensions, it is generally challenging to couple light efficiently
between them. One approach is to tailor the geometry of each
waveguide such that individual uncoupled propagation con-
stants are equal at a particular wavelength [27,28], i.e., they
are phase matched, analogous to what occurs in sensors that
rely on dielectrics alone [29–32]. Figure 1 (left) shows a con-
cept schematic of an example plasmonic waveguide sensor.
After coupling light into the dielectric core, a wavelength-
dependent excitation/propagation of the modes in the sensing
region occurs, leading to characteristic transmission spectra
(Fig. 1, right). In typical sensing schemes, the phase-matching
(PM) wavelength is associated with a local transmission dip due
to directional coupling; because this condition is sensitive to the
refractive index, shifts in the transmitted spectrum thus
contain information on changes in the analyte. Compared
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to all-dielectric sensors, plasmonic sensors can exploit plas-
monic modes with extremely short evanescent tails, which al-
low for exquisite sensitivity to small refractive index changes
within a few tens of nanometers [2]. However, because plas-
monic systems are inherently lossy (i.e., non-Hermitian
[33,34]), they feature subtle and counterintuitive eigenmode
(EM) topologies [35], whose excitation and propagation are
far from trivial [36], and thus demand careful consideration.
Figure 1 (right) shows different achievable transmission spectra
that can result by varying wavelength and interaction length.
Depending on the analyte refractive index, such sensors can
behave as “effective” parity-time (PT ) symmetric (EPTS),
or effective PT broken (EPTB) systems [18,37], whose reso-
nant behavior is markedly different when the analyte length L is
changed [18]. Furthermore, non-Hermitian systems can sup-
port exceptional points (EPs) [35], which in some experiments
can be used for enhanced sensing [38]; what role EPs play in
the specific context of plasmonic waveguide sensors has, to the
best of our knowledge, yet to be discussed in detail. Most com-
monly, experimental reports of plasmonic waveguide sensors
are accompanied by mode simulations to explain the overall
measured features by judiciously selecting the mode that domi-
nates the loss spectrum [20,23]; conversely, several numerical
reports are not supported by detailed comparisons with experi-
ments [39,40] (often because the designed devices, although
realistic, are challenging to fabricate). In such cases, sensing per-
formance—e.g., how much a plasmonic resonance shifts as the
analyte index changes—is deduced from the properties of indi-
vidual 2D mode calculations, rather than considering the 3D
excitation, propagation, and interference of all participating
modes. Simulations of plasmonic sensor implementations [41]
using commercially available solvers (which typically rely on
finite element or finite difference time domain methods) often
require fine meshing and large devices, making them computa-
tionally demanding and time-consuming. While full device
transmission spectra have been discussed for selected configu-
rations [18,41,42], a comprehensive study of how the inferred
sensing properties fare against experimentally measurable quan-
tities as a function of the key parameters is still missing.

Here we show, with 1D modes undergoing 2D propagation,
that full transmission characteristics of non-Hermitian plas-
monic waveguide sensors can be reproduced with a straightfor-
ward EM model [28] that relies on modal calculations. This
model crucially takes into account both coupling in and out
of the device, as well as propagation over a finite length.
Our results are validated by full vector finite-element method
(FEM) calculations (COMSOL). These fast computations en-
able us to calculate the full transmission characteristics, such as
the extinction ratio, resonance width, and sensitivity, as a func-
tion of all key parameters, including wavelength, interaction
length, and analyte index. This approach allows a direct com-
parison of full device performance (i.e., which considers mode
excitation and propagation) with commonly used approaches
that use modal calculations alone (i.e., which do not consider
excitation and propagation). We show that many proxies ex-
tracted from mode calculations or coupled mode theory alone,
such as PM wavelength, are not representative of a device’s per-
formance and can provide misleading sensitivity and detection
limit (DL) values. Our study reveals a number of additional key
features: (i) the DL is a property of a specific device, and cru-
cially depends on the physical sensor length; (ii) the lowest DLs
occur in regions where directional coupling occurs, as a result of
beating between hybrid modes that produce narrow spectral
widths; (iii) single-mode filtering at the multimode sensor out-
put is fundamental for achieving such a narrow spectral feature;
(iv) the high sensitivity at the EP can be seen in the modal
beating of the hybrid EMs in the plasmonic region. These re-
sults can be immediately adapted to more realistic systems
formed by 2D modes undergoing 3D propagation [27].

2. THEORY

A. Principle of Operation
We first consider the plasmonic waveguide sensor shown in
Fig. 2(a), where modes propagate in z, and different materials
are distributed in x. Here we will limit ourselves to the analysis
of a specific pure 2D geometry, which was designed to exem-
plify the different topological situations of EMs for analytes

Fig. 1. Concept schematic overview of the present study. A plasmonic waveguide sensor can be used to identify change in the refractive index of an
analyte (blue: dielectric; yellow: metal; green: analyte; interaction length: L) by coupling to a mode at the input and measuring the transmission
spectrum T at the output. Note that the resonant transmission is a function of both wavelength λ and length L and can present remarkably
different characteristics depending on whether the system is in the EPTS or EPTB regime [18], each unlocked by changing the refractive index
of the analyte.
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with the refractive index of aqueous solutions, as well as the
various sensor performance and design considerations one
can encounter. All waveguides are assumed to be infinite in
y, providing physical insight into coupling mechanisms over
a large parameter space and relatively fast calculation time.
The system is here formed by a 1D slab of SiO2 (waveguide
width: d � 1.95 μm), coated with a finite length gold nano-
film on one side (thickness t � 30 nm), and surrounded by an
analyte (RI: na � 1.32–1.42) elsewhere. This dielectric wave-
guide is multimode, supporting three to six modes between 400
and 800 nm. While we will only excite the fundamental mode
at the input, having multiple modes at the output is of impor-
tance for our later analysis. The relevant plasmonic mode here
is the long-range surface plasmon (LR-SPP) [43], whose real
part can be designed to match with the fundamental mode
of the dielectric waveguide. We choose this geometry as a start-
ing point of the discussion for two reasons: first, because it most
closely resembles commonly used fiber-based structures [15];
second, because long-range plasmons have a cutoff wavelength
[44] that is highly sensitive to the environment and that can
also be harnessed for enhancing sensors. For this gold film
thickness, the (cutoff-free) short-range surface plasmon’s
(SR-SPP’s) effective index and loss are too high to couple to
the dielectric mode and are considered separately for a suitably
modified geometry in Section 4. The interaction length L cor-
responds to the length where the gold film and the analyte over-
lap. The modes in the sensing section are excited by the
fundamental mode of the silica slab at z � 0. At z � L, the
superposition of modes of the sensor in turn excites modes
of the silica slab. Experimentally, measurements consider the
resulting transmitted wavelength-dependent intensity, shown
schematically in Fig. 2(b). These measurements are character-
ized by a transmission minimum Tmin, a resonant wavelength
λR , and a spectral width δλ, all of which depend on na.

There are two dominant interpretations of the cause of the
resonant dip in waveguide plasmonic sensors. The first is that
the dominant mode inside the sensor is lossy, with a loss peak
that depends on the analyte’s index. In that interpretation, the
wavelength-dependent loss of this dominant mode is measured.

The second is that two modes are excited in the sensing section,
and the output results from their interference—in short, that
the plasmonic sensor acts as a directional coupler, with the PM
wavelength being dependent on the analyte index. In this paper
we will show in which circumstances each of these interpreta-
tions is correct, their limitations, and how to use their under-
standing to optimize sensing performance.

B. Sensitivity and DL
Figure 2(b) shows the main features of typical transmission
spectra as na increases. The position of the resonance wave-
length λR is a function of na, and the sensor’s sensitivity S is
defined by the shift of resonant wavelength per change in
analyte refractive index (RI),

S � dλR
dna

: (1)

A refractive index sensor’s overall performance is best char-
acterized by its DL, which is the smallest detectable change in
RI δn, which generally depends on a specific user’s experimental
configuration. Wu et al. [31] extended White and Fan’s [45]
heuristic formula for the DL in the context of measurements
that rely on resonant transmission spectra, most relevant for the
present case,

δn ≈
1

S
δλ

1.5�SNR�0.25 , (2)

where SNR is the signal-to-noise ratio in linear units near the
transmission minimum Tmin, and δλ is the spectral width at
twice the minimum transmission, i.e., the Tmin � 3 dB limit,
as shown in Fig. 2(b). The smallest detectable δn would stem
from a combination of narrow resonance width, high sensitiv-
ity, and low instrument noise. Since the SNR is dictated by the
instrument, for the remainder of this work we shall consider
only S and δn. In general, a high S and a small δλ do not occur
in the same region of parameter space. While S could be in-
ferred from modal calculations (in lossless dielectric directional
couplers, for example, it can be extracted from the shifts in the
PM wavelength [29–31,46]), δλ also depends on the interac-
tion length L, and thus requires that the modes’ excitation and

Fig. 2. Concept schematic of the plasmonic waveguide sensor considered. The fundamental mode input of a dielectric silica waveguide (width: d ;
field: ψ in � ψd

1 ) couples to the hybrid EMs (ψ1,2, indicated by blue and red curves) of a gold-coated region (thickness: t), surrounded by a liquid of
refractive index na. The EM excitation and interference over a length L result in a wavelength-dependent transmitted power T , which can contain
information on changes in na. The output field is a superposition of the dielectric waveguide EMs, ψout � t1ψd

1 � t2ψd
2 �…. The sensing region is

lossy and thus non-Hermitian. (b) Example T �λ� spectra for increasing na. The shift in resonant wavelength λR determines the sensitivity
S � dλR∕dna. Each resonance possesses a characteristic 3 dB-width δλ, which depends on EM excitation and interference upon propagation.
Small changes in na can be resolved for small δλ and large S, i.e., the DL is δn ∝ δλ∕S [31].
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propagation through the sensor be considered in detail. In lossy
systems, even calculating S can be difficult, as losses and inter-
ference compete, so that the minimum transmission does not
necessarily occur at the PM wavelength or at the wavelength of
maximum loss for any one mode.

C. Modes
We begin by considering all relevant bounded EMs shown in
the Fig. 2(a) schematic. The propagation constants, as well as
the electric and magnetic fields of each mode are obtained by
numerically solving a complex transcendental dispersion equa-
tion resulting from enforcing boundary conditions between the
layers [44]. The material dispersions for silica [47] and gold
(Drude model in Ref. [48]) are taken into account, and the
analyte index is taken as a wavelength-independent constant
as labeled. Figure 3(a) shows a schematic of the modes consid-
ered. The two hybrid modes in the sensing region of Fig. 2(a)
(propagation constants: βi�1,2) are shown as solid lines. For
comparison, the isolated (uncoupled) EMs—supported by
an equivalent dielectric waveguide without a gold film (propa-
gation constant: βd ), or by an equivalent gold nanofilm sand-
wiched between silica/analyte on each side—are shown as
dashed lines.

Figures 3(b)–3(d) show the associated EMs’ dispersion
curves (neff ,i � βi∕k0, k0 � 2π∕λ) for three values of na. To
aid physical intuition, we show each mode’s real part

ℜe�neff ,i� [top of Figs. 3(b)–3(d)] and loss αi [in dB∕μm, bot-
tom of Figs. 3(b)–3(d)], which is related to the imaginary part
of ℑm�neff ,i� via

αi �dB∕μm� � 10 log10fexp�2ℑm�βi� × 1 μm�g: (3)

Figure 3(e) also shows a detailed 3D plot of the dispersion of
the hybrid EMs as a function of na. Note in particular the tran-
sition between a regime where ℜe�neff � cross and ℑm�neff �
anticross [Fig. 3(b)], and a regime where ℜe�neff � anticross
and ℑm�neff � cross [Fig. 3(d)], separated by an EP [Fig. 3(c)]
where the propagation constants coalesce, with equal real and
imaginary parts for both hybrid modes [35]. This kind of tran-
sition is characteristic of coupled non-Hermitian systems and is
frequently encountered when designing plasmonic waveguide
sensors [18,40]. The transition through the EP is similar to
those in PT symmetric systems [37], for example in situations
including perfectly balanced optical gain and losses [37]. In
such PT symmetric situations, the eigenvalues can either be
real and follow PT symmetry, or form complex conjugate pairs
and thus break PT symmetry. These two regimes are separated
by the EP, where the eigenvalues coalesce. Structures with a
global net loss, e.g., plasmonic [18,38] and leaky [51] wave-
guides, share many of the same features as non-Hermitian sys-
tems with no net loss: the main difference is that eigenvalues are
shifted along the positive imaginary axis with respect to the
perfectly loss-balanced case. Coupled lossy systems can thus

Fig. 3. (a) Summary schematic of relevant modes. Solid blue/orange curves: hybrid modes of a silica waveguide of finite width in contact with a
thin gold film. The blue dashed curve corresponds to an equivalent system without gold film (dielectric mode), and orange dashed curve corresponds
to an equivalent system with infinite silica width (plasmonic mode). The associated ℜe�neff � (top row) and loss (in dB∕μm, bottom row), as a
function of wavelength, are shown for (b) na � 1.32, (c) na � 1.33, and (d) na � 1.36. Note the transition from the crossing to anticrossing of
ℜe�neff � [and vice versa for the loss via ℑm�neff �] via the EP. Also shown are different criteria used in the literature for inferring where plasmonic
resonances occur: phase matching (where the real parts of the dielectric and plasmonic EMs cross [29]), maximum loss (where the loss of the
dielectric-like hybrid mode is maximum [20]), and loss-matching [49] (where the imaginary parts of the hybrid EMs cross). The wavelength
λΔnmin

eff
of minimum effective index difference is also indicative of strong coupling [50]. In the present configuration and near resonance, eigenvalues

coalesce at the EP when na � 1.33, na < 1.33 supports EPTB modes, and na > 1.33 supports EPTS modes. (e) Detailed 3D plot ofℜe�neff � (top)
and loss (bottom), as a function of wavelength and na.
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be more rigorously classified as having eigenvalues that are ei-
ther EPTS or EPTB, as labeled in Fig. 3(a). To simplify the
discussion, we point out that in the present configuration
and near regions where plasmonic resonances are measured, ei-
genvalues coalesce at the EP when na � nEP � 1.33, na < 1.33
supports EPTBmodes, and na > 1.33 supports EPTSmodes, as
highlighted by Figs. 3(b)–3(e). In the EPTB regime near the res-
onance, both hybrid EMs have field distributions with sizeable
overlap with the dielectric core region and have comparable loss:
they are both excited by the incoming dielectric mode, and their
interference leads to directional coupling and energy exchange
between the dielectric waveguide and metal film [27,28]. In the
EPTS regime, the incoming dielectric mode predominantly ex-
cites the low-loss hybrid mode, effectively leading to monotonic
exponential decay resulting from the transmission of the excited
lossy mode [18].

One important question that arises when designing plas-
monic refractive index sensors is the following. How can the
location and shift of the resonant wavelength λR be inferred
from the modal calculations of Fig. 3? Various approaches
may be found in the literature, as a result of the many possible
choices available, which result from the transition between
EPTS and EPTB regions near resonance. Inspecting the loss
of hybrid mode 1 in the EPTB region [e.g., Fig. 3(b),
na � 1.32] might suggest a simple interpretation: the funda-
mental mode of the dielectric waveguide couples only to the
lowest loss mode, and the resonant transmission T �λ� (in
dB) can be computed as

T �λ� � min�α1, α2� × L, (4)

where αi is the loss of hybrid mode i (in dB∕μm) and L is the
interaction length (in μm). In other words, the loss is computed
from the minimum of the two hybrid mode loss curves of
Fig. 3(b), and both λR and δλ follow immediately from α1
and are independent of L. Tmin thus occurs where the loss
of this curve is maximum, as highlighted by the label “max.
loss” in Fig. 3(b). We will show that this approach is adequate
in the EPTB region, but many reports extend this reasoning to
the EP and EPTS regions [i.e., by computing the loss from the
minimum of the two hybrid mode loss curves in Fig. 3(c) and
Fig. 3(d) at each na] without accounting for mode excitation,
propagation, and interference. This reasoning would imply that
the resonance minimum Tmin occurs at the wavelength where
the two loss curves of the hybrid EMs in Fig. 3(d) intersect,
i.e., the “loss matching” wavelength λLM [49], as indicated
in Fig. 3(d). One other choice that can be borrowed from
the dielectric waveguide literature to predict λR is the “PM”
wavelength λPM, i.e., where the real parts of the uncoupled ef-
fective indices cross, as indicated by “PM” in Fig. 3(b). The PM
wavelength would be a reasonable estimate of the resonant
wavelength of the directional coupler consisting of the plas-
monic and dielectric waveguides if these two waveguides were
weakly coupled. However, plasmonic refractive index sensors
use waveguides that are often in close proximity, invalidating
this approximation. Furthermore, because the plasmonic
guide has a cutoff, the PM point ceases to exist at higher analyte
indices. In the EPTS region, where directional coupling
occurs, one alternative choice is the wavelength λΔnmin

eff
at the

minimum effective index difference, i.e., where ℜe�Δnmin
eff � �

min�ℜe�neff ,2 − neff ,1��, as highlighted in Fig. 3(d). This wave-
length informs where coupling between adjacent waveguides is
strongest [50] and resonant energy transfer is most efficient.
Finally, another proxy for the resonant wavelength one can
use is the cutoff wavelength of the plasmonic mode λcutoff as
indicated by “cutoff” in Fig. 3(b). This is perhaps less used in
the plasmonic literature, but has been used to successfully ana-
lyze the high sensitivity of all-dielectric photonic crystal fiber
sensors with liquid analyte satellites [29]. Note that the depend-
ence of these parameters on na, should it correlate with λR ,
would only provide information on S via Eq. (1), but that
δλ and δn require knowledge of the full transmission spectrum,
which generally cannot be obtained simply from modal
dispersion curves alone.

D. Propagation
We now evaluate the transmission spectra associated with the
waveguide configuration shown in Fig. 2, accounting for the
modes’ excitation and propagation along the device length L
as na is varied. Here, we always consider the case where the
input mode is the fundamental mode of the isolated dielectric
waveguide (i.e., a silica core and an analyte cladding), corre-
sponding to typical experimental conditions [15]. The funda-
mental mode couples to the two hybrid EMs of the plasmonic
sensor, which then propagate through the sensing region before
exciting the modes of the output dielectric waveguide.
Although this simple model does not account for reflections
and scattering at the boundary between the dielectric and hy-
brid waveguide, these have a negligible impact on the overall
transmission spectra at the configurations considered, as we dis-
cuss below. For 1D modes propagating along z, the total elec-
tric and magnetic fields in the sensing region can be written as a
superposition of its supported EMs,

E�x, z� � a1E1�x� exp�iβ1z� � a2E2�x� exp�iβ2z�, (5)

H�x, z� � a1H1�x� exp�iβ1z� � a2H2�x� exp�iβ2z�, (6)

where the subscript i � 1,2 labels the two hybrid EMs in the
sensing region. Here we use an implicit exp�−iωt� time
dependence, and the convention that actual fields are the real
parts of the complex fields. H and E are the transverse total
magnetic and electric field vectors at any point in the plasmonic
waveguide, respectively,Hi and Ei are the magnetic and electric
field distributions of the hybrid EMs, βi � βRi � iβIi are their
propagation constants, and ai are the modal amplitudes that
determine the contribution of the respective EMs to the total
field. Strictly speaking, the above expansions are approximate,
since contributions from higher-order modes and radiation
modes have been neglected, but we shall be verifying their val-
idity through comparisons with full-field finite-element calcu-
lations. Following the convention used in Ref. [52], modal
fields are normalized so that

1

2

Z
�Ei�x� ×Hj�x��dx � δi,j : (7)

This normalization does not use the complex conjugate of
H, since the latter is problematic in waveguides including
material losses [52]. Note, however, that this normalization

Research Article Vol. 10, No. 3 / March 2022 / Photonics Research 723



is equivalent to the complex conjugated version for purely loss-
less waveguides.

Modes can always be normalized to satisfy Eq. (7), which
can then be used to calculate the complex modal amplitudes
at input, leading to

ai �
1

2

Z
�Ei�x� ×Hin�x��dx, (8)

where in this case Hin�x� � Hd
1�x� is the magnetic field of the

fundamental mode of the dielectric waveguide, corresponding
to the input (z � 0), as shown in Fig. 2(a). Note that because
Eq. (7) is unconjugated and the waveguide includes losses, the
sum of jaij2 is not equal to the total power carried in the wave-
guide. At the output boundary between the plasmonic sensor
and the dielectric waveguide (z � L), the field is a superposi-
tion of the EMs of the plasmonic waveguide, i.e., Hout�x� �
H�x, L� via Eq. (6). The transmitted amplitude is then ob-
tained by projecting this field onto the modes of the silica wave-
guide via

ti �
1

2

Z
�Ed

i �x� ×Hout�x��dx, (9)

where Ed
i is the electric field distribution of each dielectric

waveguide EM. In the purely lossless dielectric waveguide,
the normalization Eq. (7) is identical to power normalization,
and thus the total transmission is given by T �λ� � P

i jt i�λ�j2;
in cases where the output is a single mode waveguide,
T � jt1j2.

We calculate the wavelength-dependent modal amplitudes
ai, the propagation constants βi, and all relevant fields, which in

combination are used to calculate the amplitudes t i at the out-
put interface of the plasmonic sensor region. Figure 4(a)
shows the intensity transmitted by the fundamental mode
[i.e., T �λ� � jt1�λ�j2] for three examples of interaction lengths
L � 25 μm (solid blue curves), L � 37.5 μm (solid orange
curves), and L � 50 μm (solid yellow curves), for increasing
analyte index as labeled, associated with the mode calculations
of Fig. 3. Before proceeding with a more detailed analysis, we
can already note a number of important features. In the EPTB
region (na � 1.32), the transmission spectrum monotonically
and exponentially decreases with increasing length, and the res-
onant wavelength remains nominally unchanged. The trans-
mission spectrum near the EP (na � 1.33) exhibits similar
overall features, but with a larger overall loss. Note that the
EP wavelength (λEP � 564 nm) does not correspond to the
resonant wavelength at Tmin (λR � 570 nm), as highlighted
by the dashed circle in Fig. 4(a). Further increasing the analyte
index to na � 1.36 leads to a transmission spectrum that os-
cillates with propagation length due to interference between the
excited EMs, noting that here Tmin and δλ are smallest at the
intermediate length (L � 37.5 μm). One immediate conse-
quence is that the lowest DLs δn as per Eq. (2) will occur
in EPTS regions where directional coupling is supported,
and for specific analyte lengths. Finally, at larger analyte indices
(na � 1.38 and na � 1.40), the resonant transmission spec-
trum becomes increasingly complicated: λR and δλ depend
on length, and the EMs’ excitation, propagation, and loss con-
tribute to the overall transmission in ways that are challenging
to predict by inspecting the modal dispersion alone. This is

Fig. 4. (a) Spectral distribution of power in the fundamental dielectric waveguide mode at output as a function of wavelength T �λ� � jt1�λ�j2,
for the four analyte indices of Fig. 3 as labeled, for L � 25 μm, L � 37.5 μm, and L � 50 μm (blue, orange, and yellow, respectively). Dashed-
dotted lines compute Eq. (4) for one example length (L � 37.5 μm). (b) Total power in the waveguide at output as a function of wavelength,
i.e., T �λ� � Σijt i�λ�j2. Solid lines correspond to calculations performed via the EM method (EMM), including mode excitation and propagation,
and dashed lines correspond to full vector FEM calculations (COMSOL). Axial component of the normalized Poynting vector in the sensor region at
resonance (c) in the EPTB regime (na � 1.32, λR � 560 nm) and (d) in the EPTS regime (na � 1.36, λR � 610 nm), calculated using FEM. Note
that the color scale is linear.
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particularly important from an applications standpoint, since
higher analyte indices fundamentally yield larger sensitivities
[29]. Finally, we note that in contrast to the EM theory pre-
sented here, a perturbative coupled mode analysis [53], while
providing insight into overall non-Hermitian behavior, cannot
rigorously be applied to the present case, because (i) the isolated
plasmonic mode cuts off before longer wavelengths regions
where hybrid modes are supported and where the highest sen-
sitivities can be reached, and (ii) the two waveguides are physi-
cally connected, and thus no evanescent field is present.
Analogous to previous analyses of similar systems, the EM
method presented here is the most straightforward method
to compute the mode properties and transmitted spectra.

Figure 4 also includes a comparison of the transmission
spectra obtained via the EM method described above with full
vector FEM simulations (COMSOL), shown as dashed lines. A
port boundary condition at the input ensures that only the fun-
damental TM mode of the waveguide is excited. A port boun-
dary condition at the output provides the option of considering
either the amount of power in the fundamental mode [54]
[Fig. 4(a)], or the total power transmitted by the waveguide
[Fig. 4(b)]. Perfectly matched layers at every external boundary
suppress any reflections in the simulation volume, absorbing all
power carried by the dielectric waveguide at the output. We
find an excellent agreement between our EM method and
the FEM calculations in all cases, provided meshing of the gold
region is fine enough �<10 nm�. The EM method accurately
predicts the transmission spectra with computations that are
orders of magnitude faster than FEM, making large parameter
sweeps more practical. Our FEM calculations indicate that the
reflected power back into the input waveguide is <0.03% for
L > 10 μm for the analyte indices and wavelengths discussed,
resulting in negligible Fabry–Perot effects. Furthermore, the
scattered power into radiation modes is <2% for the configu-
rations considered. Such effects only lead to slight offsets in the
total transmitted power, which a posteriori validates our EM
model assumptions in the sensor configurations considered.
Such small reflection and scattering effects are likely a result
of the gold film being 2 orders of magnitude thinner than
the dielectric waveguide, and located near the evanescent tail
of the incoming dielectric mode. These properties are typical
for plasmonic waveguide sensors but might need revisiting
when approaching other designs.

For completeness, Fig. 4(a) shows the computed transmis-
sion spectrum from Eq. (4), in the example case of
L � 37.5 μm, as a dashed-dotted line. While Eq. (4) predicts
the transmission in regions where the isolated mode is in the
topological vicinity of the coupled modes (i.e., off-resonance),
and may be considered adequate in finding an approximate lo-
cation for λR for EPTB regions, this model fails to be accurate at
resonance for all cases, and fails entirely in the EPTS region.

Figure 4(b) shows the same calculations when considering
the total power transmitted at output, i.e., T �λ� � Σijti�λ�j2
for two representative values of na in the EPTB and EPTS re-
gions. While this only marginally impacts the EPTB region
(na � 1.32), this is more significant in the EBTS region, where
directional coupling is supported, because the output power is
distributed among the available dielectric waveguide modes,

increasing Tmin and decreasing δλ. Figures 4(c) and 4(d), re-
spectively, show the calculated axial component of the Poynting
vector at resonance in the EPTB regime (na � 1.32, λR �
560 nm) and EPTS regime (na � 1.36, λR � 610 nm), using
the FEM. The EPTB regime is dominated by absorption upon
propagation as a result of metallic losses in the gold film; in the
EPTS regime [Fig. 4(d)], a higher fraction of power is trans-
ferred to the gold surface upon propagation due to directional
coupling. Note in particular that the output fields of the
Fig. 4(d) configuration can couple to higher-order modes of the
dielectric waveguide, which leads to the aforementioned reduc-
tion δλ in the absence of a mode filter, as per Fig. 4(b).

From the above analysis, it immediately follows that, in or-
der to minimize δλ and thus δn, it is important to filter out
higher-order modes at output, for example, by splicing the sen-
sor with a single-mode fiber [10]. Henceforth, we shall there-
fore consider such filtering to be implemented and only
consider power in the fundamental mode.

3. DISCUSSION

The power of the EM model is that it allows us to rapidly ob-
tain resonance wavelength, spectral width, and extinction ratio
from rapid calculations of the realistic transmission spectrum
T �λ� of the full device. Having noted the salient features of
plasmonic sensors at different non-Hermitian regimes, and
having validated our EM model, we now quantify the key
parameters S, δλ, and Tmin in detail, particularly with regard
to their dependence on L and na.

A. Dependence on Analyte: Relation to Sensitivity
We begin by considering the performance of the sensor as a
function of na for the representative lengths L considered so
far. Henceforth, we will only consider the EPTS regime, which
can yield the smallest δλ due to directional coupling. We repeat
the calculations for the three analyte lengths shown in
Fig. 4, but with a much finer resolution on na. The resulting
transmission spectra, as a function of na and λ, are shown
in Figs. 5(a)–5(c) for L � 25 μm, L � 37.5 μm, and
L � 50 μm, respectively. We immediately note that, although
in all cases the resonances qualitatively redshift for increasing
analyte index, their shape, sharpness, and location can change
significantly. To quantify this further, Figs. 5(d)–5(f ) show
the associated resonant wavelength λR , 3-dB width δλ, and
transmission minimum Tmin as a function of na, for the same
lengths as in Figs. 5(a)–5(c): L � 25 μm (blue), L � 37.5 μm
(orange), and L � 50 μm (yellow). Figure 5(b) shows that the
resonant wavelength is dependent on the length of the chosen
device, particularly at longer lengths, as anticipated in our pre-
liminary analysis of Fig. 4(a) at na � 1.38 and na � 1.4.
Furthermore, high analyte indices show a fluctuation in the res-
onant transmission wavelength as the length of the sensor in-
creases, and even multiple transmission minima—see also the
spectra in Fig. 4(a), na � 1.40. This behavior is challenging to
interpret, as a result of the wavelength dependence of the com-
plex dispersion profiles, where mode excitation, propagation,
and losses all contribute to the total transmission spectrum
in a nontrivial manner. The EPTB regime is dominated by
the excitation of the lowest-loss hybrid EM over the entire
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wavelength range (i.e., ja1j2 > 0.9), with minimal contribu-
tions from the highest loss mode (i.e., ja2j2 < 0.1�. In contrast,
the EPTS regime is characterized by broad wavelength regions
(bandwidth: 50–100 nm) where both modes are excited (i.
e., ja1,2j2 > 0.4), analogous to earlier reports of broadband
plasmonic directional couplers [28]. As a result, fixing the
length as per Fig. 5 shows complete coupling only for certain
combinations of na and λ; elsewhere, incomplete coupling oc-
curs, and local transmission minima occur over the associated
wavelength region, with much larger δλ values than the optimal
case, and fluctuating resonant wavelength λR , as shown in
Fig. 5(c) and the yellow line in Fig. 5(d).

To quantify this effect, Fig. 5(e) shows δλ as a function of
na: in the EPTS regime considered, it is possible to achieve a
subnanometer δλ for specific combinations of L and na. This
spectral width minimum is associated with a transmission mini-
mum Tmin, as shown in Fig. 5(f ) and would require a high
enough SNR to be measured (here: >60 dB). However, small
deviations in na can change δλ significantly for fixed L.

Both the sensitivity S and resonant width δλ thus depend on
device length L and analyte index na. Therefore, an optimized
plasmonic waveguide sensor design (small δn) crucially requires
a judicious combination of na (chosen by the user) and L (de-
termined by the choice of target na range) to ensure that δλ is
minimized. Most importantly, engineering and analyzing such
designs require implementing the model presented here to ap-
propriately account for hybrid mode excitation, propagation,
and loss.

Recall that while the evaluation of δλ demands full trans-
mission spectra, recommended design criteria often infer the
sensitivity S from modal calculations, as a valuable proxy with
fast calculation time [55], informing the first steps of a plas-
monic sensor design. This approach relies on calculating the
wavelength λi at which a particular condition is met, as a func-
tion of na, and computing the associated sensitivity via
Si � dλi∕dna. Because our fast numerical tool allows us to ob-
tain λR from T �λ�, we can now also compare how the sensi-
tivity inferred from different conditions, obtained from mode
calculations alone, compares with the S � dλR∕dna, obtained
from propagation calculations. Continuing our earlier analysis,

we only consider the EPTS region (na > 1.33), which can
achieve the lowest δn by complementing high sensitivities with
subnanometer δλ at specific L.

Figure 6(a) shows the loss-matching wavelength λLM (pur-
ple), the PM wavelength λPM (light blue), the wavelength where
real part of the effective index difference is minimum λΔnmin

eff

(green), and the plasmonic cutoff wavelength λcutoff (black),
as defined in Fig. 3 and associated text. Note in particular that
λPM does not exist for na > 1.35 (i.e., the real parts of the iso-
lated EMs do not cross). Analogously, the imaginary parts of
the hybrid EMs do not cross for na > 1.385, and λLM does
not exist in that region. Because λR depends on L, we show
λR for both L � 25 μm (dark blue) and L � 37.5 μm (or-
ange), obtained from the transmission calculations of Fig. 5.
All curves show superlinear wavelength shifts with increasing
na. The associated sensitivities are shown in Fig. 6(b) on a log-
arithmic scale. For the two example lengths shown, we find that
the cutoff wavelength of the uncoupled plasmonic mode (black
line) appears to be the best proxy for the sensitivity of the full
(coupled) dielectric-plasmonic waveguide sensor (blue and or-
ange lines), predicting the devices’ sensitivity within a factor of
∼3 over the entire na range. However, this is not the case if a
wider range of lengths L is considered. The shaded gray region
in Fig. 6(a) and Fig. 6(b), respectively, shows the ranges of pos-
sible λR and associated sensitivities for L � 10–2000 μm, the
latter of which spans more than an order of magnitude. This
example serves to reinforce the message that no single criterion
obtained from mode dispersion calculations can be used to ac-
curately infer device sensitivity, which is crucially dependent on
the device length.

B. Dependence on Length: Relation to the EP
We now calculate the transmission spectra for representative
values of na, but with a much finer resolution on L. The re-
sulting transmission spectra, as a function of L and λ, are shown
in Fig. 7(a). Figures 7(b)–7(d), respectively, show the associated
resonant wavelength λR , 3-dB width δλ, and transmission
minimum Tmin as functions of L for each analyte index na
of Fig. 7(a) as labeled. Figure 7(b) confirms that the resonant
wavelength is nominally constant for all L and na ≤ 1.33 (in

Fig. 5. Calculated transmission spectra (single-mode output) as a function of na and λ for different values of L. (a) L � 25 μm (blue);
(b) L � 37.5 μm (orange); and (c) L � 50 μm (yellow); (d) associated λR ; (e) δλ; and (f ) Tmin. Line colors in (d)–(f ) correspond to that of
the L values labeled in (a)–(c). All plots are in the EPTS regime, where the smallest δλ is achievable due to directional coupling.
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the EPTB regime). For na > 1.33 (in the EPTS regime), how-
ever, λR is dependent on length and can fluctuate significantly,
as per our earlier analysis.

Figure 7(c) shows that the spectral width δλ decreases
monotonically with increasing length for resonances occurring
in the EPTB regime (i.e., na � 1.30 and na � 1.32) because
only coupling to the lowest loss mode dominates, and resonant
interference does not occur. In contrast, the EPTS regime sup-
ports resonant coupling effects from the dielectric core to the
gold surface—or equivalently, resonant interference between
the two hybrid modes—leading to subnanometer δλ at specific
interaction lengths L. It is striking to note that in the EPTS
region, the wavelength at which complete coupling occurs
[i.e., blue color map regions in Fig. 7(a)] can also depend
on L. This effect becomes more prominent as na increases;
see, for example, the case of na � 1.4, which is due to the dif-
ferential wavelength-dependent losses between the two beating
modes, leading to a change in the wavelength with the most
complete destructive interference. Once again, δλ minima
are associated with local Tmin minima, as shown in Fig. 7(c).
In the EPTB regime, a monotonic decrease in Tmin is observed,
consistent with a behavior dominated by the lowest loss mode
alone. In the EPTS regime, however, Tmin oscillates as a result
of directional coupling.

Let us now analyze how directional coupling is affected by
na and its relation to the EP. To simplify the discussion, we
consider LR as the location of the first transmission minimum,
highlighted by a dotted line in Fig. 7(d) for the case na � 1.34,
which roughly (but not exactly) corresponds to half a beat
length (the two differ because of modal losses). Inspecting
Fig. 7(d) already suggests that LR depends on na, and Fig. 8
(a) quantitatively plots this dependence. As per our earlier
analysis, the inset of Fig. 8(a) shows that the wavelength at
which LR occurs is itself a function of na. Figure 8(a) clearly
shows that LR increases dramatically close to the EP at
na � 1.33 and gradually reduces as the analyte index increases.
We now show that this property is a direct consequence of the

Fig. 6. (a) Resonant wavelength λR as a function of analyte index na,
obtained from full transmission calculations, for L � 25 μm (dark
blue) and L � 37 μm (orange), corresponding to Fig. 5(d). The gray
shaded region shows the entire range of possible λR for L �
10–200 μm. Cutoff wavelength (black), PM wavelength (light blue),
loss-matching wavelength (purple), and wavelength for minimum
effective index (green), as a function of analyte index, obtained from
mode calculations, and as defined in Fig. 3(b). Corresponding sensitiv-
ity S � dλR∕dna for each curve in (a) log scale. The gray shaded region
shows the entire range of possible S using λR for L � 10–2000 μm.

Fig. 7. (a) Calculated transmission spectra (single-mode output) as a function of L and λ for different values of na as labeled, and (b) associated λR ,
(c) δλ, (d) Tmin. In (b)–(d), each curve’s color refers to the na labels in (a). For each na, we identify the first resonance dip at LR [dashed line in (d)],
corresponding to half a beat length [28].
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dispersion topology of Fig. 3(e) and indeed manifests key prop-
erties of perturbations near the EP.

Sensors that operate close to the EP have attracted much
attention in recent years because the splitting of the coalesced
eigenvalues is proportional to the square root of the change in
the environment’s relative permittivity Δε, with a much higher
slope than the linear splitting for conventional Hermitian sys-
tems [56] and can thus be exploited for enhanced sensing
[56–58]. The difference in effective index can be measured us-
ing an interferometric setup as a resonant dip with wavelength
exquisitely dependent on analyte index, which one would ex-
pect is exactly what happens in our sensor through the beating
between the two modes over a finite length. However, near the
EP, the small splitting corresponds to beat lengths much larger
than the loss length of the modes, so that dips are dominated by
loss, rather than interference, and the benefits of the EP are lost.
Intriguingly, to restore the benefits one could consider compen-
sating losses by adding gain, which would get the sensor geom-
etry closer to a true PT -symmetric system.

Nonetheless, the characteristic square root dependence
near the EP is readily found from the hybrid EM calculations
of Fig. 3. To illustrate this, Figure 8(b) shows a plot of the
associated minimum eigenvalue splitting, i.e., ℜe�Δnmin

eff � �
min�ℜe�neff ,2 − neff ,1��, for each Δε � n2a − n2EP. For small val-
ues ofΔε, the eigenvalue splitting follows a square root depend-
ence (black dashed line). For large values ofΔε, this is no longer
the case because perturbations to the EP are large. Note that
ℜe�Δnmin

eff � occurs at wavelengths longer than the cutoff of
the isolated plasmonic mode—a further indication of how re-
moved this geometry becomes from the perturbative treatment.

One important subtlety, in the present context, is that the
wavelength at which the minimum EM splitting occurs, shown
in the inset of Fig. 8(b), is also a function of Δε. Recalling
that the beat length and EM splitting are related by
Lb � λR∕Δneff—at least in the lossless case—Fig. 8(c) shows
1
2 λR∕LR as a function of Δε, as obtained from the transmission
spectra of Fig. 7. We find a square root dependence (black
dashed line) for small Δε perturbations, and deviations for
larger values of na: the signature square root dependence on

perturbation, close to the EP, is thus obtained from the
device beat length. Interestingly, the deviation from the square
root dependence is opposite to that predicted from mode
calculations alone at a high-index region, once again as a result
of the subtle interplay of mode excitation, interference, and
loss—a further indication that mode dispersion calculations,
in isolation, do not adequately predict the behavior of plas-
monic sensors.

4. APPLICABILITY TO SHORT-RANGE
PLASMONS

Having considered a plasmonic sensor that relies on the long-
range surface plasmon, we now briefly discuss how our conclu-
sions carry over to the case of short-range surface plasmons (SR-
SPPs) [42,59]. SR-SPPs are ideally suited for chip-scale minia-
turization due to their smaller effective modal area, lower group
velocities, larger effective index, and no cutoff. In the present
context, phase matching to the SR-SPP thus requires a different
geometry than in previous sections, namely a higher-index core
waveguide adjacent to the plasmonic film. For example, let us
consider a dielectric waveguide formed by a silicon nitride core
(d � 400 nm, refractive index dispersion, Ref. [60]), sur-
rounded by an infinite silica layer on one side, and a gold nano-
film of length L on the other (t � 30 nm), separated by a silica
spacer (thickness, s � 111 nm). This geometry possesses an EP
at λ � 670 nm when the surrounding analyte index is
na � 1.33. Preliminary calculations indicate that many of
the features and properties discussed so far carry over, with
micrometer-scale interaction lengths due to the associated beat
lengths [28]. As per our analysis so far, the spectral width δλ,
resonant wavelength λR , and sensitivity S all depend on the
interaction length. Furthermore, regions of small δλ occur
for different combinations of na and L, since they are linked
to the characteristic beat length for a certain configuration. In
all cases, an a priori quantitative analysis on the basis of mode
dispersion calculations provides only an order-of-magnitude
estimate of the sensitivity, and optimization of device
performance requires a case-by-case analysis that considers

Fig. 8. (a) First resonance dip LR obtained from Fig. 7(d). The wavelength λR at which it occurs is shown in the inset. Note the rapid increase in
LR close na � 1.33, corresponding to the EP. (b) EM splitting as a function of analyte permittivity perturbation Δε with respect to the EP at
na � 1.33, obtained from the dispersion of Fig. 3, and showing a characteristic square root dependence; inset, wavelength dependence of the EM
splitting; (c) EM splitting estimated from the calculated transmission spectra of Fig. 7. The ratio 1

2 λR∕LR follows a square root dependence on Δε for
small perturbations.
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propagation through the sensor to obtain the full DL. Note that
sensitivities using SR-SPPs in this geometry are about 1 order of
magnitude lower than in the previously discussed geometry,
which used LR-SPPs. Recent chip-based waveguide sensors
harnessing plasmonic Mach–Zehnder interferometry have
shown that the resonance due to directional coupling can be
fine-tuned by appropriately phase shifting a reference wave-
guide arm [61], which, in the present context, could be adapted
to target a minimum δλ in regions of high S.

5. CONCLUSION

In conclusion, we have comprehensively evaluated the sensing
properties of plasmonic waveguide sensors by calculating their
resonant transmission spectra in different regions of the non-
Hermitian EM space. Our study highlights the limits of using
modal dispersion calculations alone to predict plasmonic sensor
performance and transmission spectra. These limits are easily
addressed by using the same modal calculations in the frame-
work of a model that accounts for both excitation and propa-
gation of the EMs supported by the sensor. The resulting
transmission calculations faithfully reproduce the transmission
spectra, verified via a comparison with full-vector finite-
element calculations, with the added benefit of allowing for
a rapid sweep over three important parameters (wavelength
and analyte index, but most importantly, device length), in turn
revealing many important aspects that have so far eluded dis-
cussion in the context of practical devices. By increasing the
resolution on the full wavelength and analyte parameter space,
we showed that no single mode dispersion criterion can be used
as a proxy for sensitivity. Indeed, the highest DLs occur where
directional coupling is supported (via subnanometer spectral
linewidths) and close to plasmonic cutoffs. The latter suggests
revisiting sensor performance in cylindrical fibers/wires, close to
the cutoff of high-order long-range cylindrical plasmonic
modes. Near the EP, the hybrid plasmonic modes yield a char-
acteristic square root dependence of the EM splitting with re-
spect to the permittivity perturbation of the sensor, which in
this context is identified through the sensor beat length. The
square root dependence theoretically leads to high slopes of the
coupling length versus refractive index, and thus high sensitiv-
ity. However, the small difference in effective index between
beating modes in this supralinear region near the EP corre-
sponds to beat lengths that are much larger than the modes’
loss length. In this case, the transmission dip is dominated
by loss rather than interference. This makes it difficult to ex-
ploit the supralinear behavior near the EP in lossy systems.
Theoretically, this issue could be avoided if one could compen-
sate losses by introducing gain, thereby bringing the sensor
closer to a true PT -symmetric system. Note that recent experi-
ments on nanofluidic-core fiber platforms [62] showed that hy-
brid mode excitation and propagation can be directly visualized
via sideways-detected fluorescence, which could be adapted in
the present context for novel, single-wavelength sensing ave-
nues that rely on beat-length measurements. Our analysis will
find widespread applications in a variety of waveguide-based
refractive index sensors, whose theoretical performance, in
some instances, might require revisiting.
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