• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0714011 (2022)
Weihao Mu, Xuehui Chen*, Yu Zhang, Lei Huang, Darong Zhu, and Bichun Dong
Author Affiliations
  • School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei , Anhui 230601, China
  • show less
    DOI: 10.3788/LOP202259.0714011 Cite this Article Set citation alerts
    Weihao Mu, Xuehui Chen, Yu Zhang, Lei Huang, Darong Zhu, Bichun Dong. Surface Morphology Analysis and Roughness Prediction of 316L Stainless Steel by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0714011 Copy Citation Text show less
    References

    [1] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [2] Wang Y, Zhou X F. Research front and trend of specific laser additive manufacturing techniques[J]. Laser Technology, 45, 475-484(2021).

    [3] Yap C Y, Chua C K, Dong Z L et al. Review of selective laser melting: materials and applications[J]. Applied Physics Reviews, 2, 041101(2015).

    [4] Ngo T D, Kashani A, Imbalzano G et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 143, 172-196(2018).

    [5] Shi W T, Wang P, Liu Y D et al. Experimental study on surface quality and process of selective laser melting forming 316L[J]. Surface Technology, 48, 257-267(2019).

    [6] Li H Y, Li Z H, Yang R et al. Research progress in forming quality control of selective laser melting metal surface[J]. Surface Technology, 49, 118-124, 156(2020).

    [7] Li J, Yang L J, Zheng H et al. Influence of laser selection melting times on the surface properties of 316L stainless steel[J]. Surface Technology, 50, 93-100(2021).

    [8] Huang W D, Zhang W J, Lian G F et al. Effect of SLM forming process parameters on surface roughness of 316L stainless steel parts[J]. Applied Laser, 40, 35-41(2020).

    [9] Hu Y, Yang X K, Kang W J et al. Effects of combination of powders with different particle sizes on surface roughness and internal defects of IN738 alloy formed by selective laser melting[J]. Laser & Optoelectronics Progress, 58, 0114003(2021).

    [10] Wei J F, Wu M P, Han J T. Effect mechanism of scanning strategy on surface quality of Inconel 718 by SLM[J]. Applied Laser, 40, 621-625(2020).

    [11] Chen L, Richter B, Zhang X Z et al. Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing[J]. Additive Manufacturing, 32, 101013(2020).

    [12] Jing Y L, Li J, Shi W T et al. Prediction of residual stress in selective laser melting based on neural network[J]. High Power Laser and Particle Beams, 33, 109001(2021).

    [13] Yang T Y, Zhang P L, Yin Y et al. Microstructure based on selective laser melting and mechanical properties prediction through artificial neural net[J]. Transactions of the China Welding Institution, 40, 100-106, 165(2019).

    [14] Wang W Q, Li Y Q, Li X et al. Microstructures and properties of Ni-Cr-B-Si alloy powders prepared by selective laser melting[J]. Materials Reports, 34, 2077-2082(2020).

    [15] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 253, 8064-8069(2007).

    [16] Yang X, Ma W J, Ren Y J et al. Subgrain microstructures and tensile properties of 316L stainless steel manufactured by selective laser melting[J]. Journal of Iron and Steel Research International, 28, 1159-1167(2021).

    [17] Wang W Q, Wang S Y, Chen F et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting[J]. Acta Metallurgica Sinica, 57, 1017-1026(2021).

    [18] Yin Y, Liu P Y, Lu C et al. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. Transactions of the China Welding Institution, 39, 77-81, 132(2018).

    [19] Yu C F, Zhao C C, Zhang Z F et al. Tensile properties of selective laser melted 316L stainless steel[J]. Acta Metallurgica Sinica, 56, 683-692(2020).

    [20] Kong D C, Dong C F, Wei S L et al. About metastable cellular structure in additively manufactured austenitic stainless steels[J]. Additive Manufacturing, 38, 101804(2021).

    [21] Gu D D, Shen Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods[J]. Materials & Design, 30, 2903-2910(2009).

    [22] Xiao J L, Yue D W, Zhao Z D et al. A visible light localization algorithm based on BP neural network optimized by genetic algorithm[J]. Journal of Optoelectronics·Laser, 30, 810-816(2019).

    [23] Song H S, Chen Z, Xu D C et al. Prediction of Cr, Mn and Ni in medium and low alloy steels by GA-BP neural network combined with EDXRF technology[J/OL]. Laser & Optoelectronics Progress, 1-14. http://kns.cnki.net/kcms/detail/31.1690.TN.20210713.0915.019.html

    [24] Gao H, Xue L Y. Back propagation neural network based on improved genetic algorithm fitting LED spectral model[J]. Laser & Optoelectronics Progress, 54, 072302(2017).

    Weihao Mu, Xuehui Chen, Yu Zhang, Lei Huang, Darong Zhu, Bichun Dong. Surface Morphology Analysis and Roughness Prediction of 316L Stainless Steel by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0714011
    Download Citation