• Photonics Research
  • Vol. 9, Issue 1, 1 (2021)
José A. Rodrigo*, Mercedes Angulo, and Tatiana Alieva
Author Affiliations
  • Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Madrid 28040, Spain
  • show less
    DOI: 10.1364/PRJ.408680 Cite this Article Set citation alerts
    José A. Rodrigo, Mercedes Angulo, Tatiana Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories[J]. Photonics Research, 2021, 9(1): 1 Copy Citation Text show less
    References

    [1] P. M. Bendix, L. Jauffred, K. Norregaard, L. B. Oddershede. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Top. Quantum Electron., 20, 4800112(2014).

    [2] A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, F. Jäckel. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale, 6, 4458-4474(2014).

    [3] P. Zemánek, G. Volpe, A. Jonáš, O. Brzobohatý. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Adv. Opt. Photon., 11, 577-678(2019).

    [4] M. Dienerowitz, M. Mazilu, K. Dholakia. Optical manipulation of nanoparticles: a review. J. Nanophoton., 2, 021875(2008).

    [5] C. Bradac. Nanoscale optical trapping: a review. Adv. Opt. Mater., 6, 1800005(2018).

    [6] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [7] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 19, 930-932(1994).

    [8] S. N. S. Reihani, L. B. Oddershede. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt. Lett., 32, 1998-2000(2007).

    [9] F. Hajizadeh, S. N. S. Reihani. Optimized optical trapping of gold nanoparticles. Opt. Express, 18, 551-559(2010).

    [10] A. Ohlinger, S. Nedev, A. A. Lutich, J. Feldmann. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett., 11, 1770-1774(2011).

    [11] L. Chuntonov, G. Haran. Trimeric plasmonic molecules: the role of symmetry. Nano Lett., 11, 2440-2445(2011).

    [12] M. Blattmann, A. Rohrbach. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano Lett., 15, 7816-7821(2015).

    [13] H. Kermani, A. Rohrbach. Orientation-control of two plasmonically coupled nanoparticles in an optical trap. ACS Photon., 5, 4660-4667(2018).

    [14] B. Sun, Y. Roichman, D. D. G. Grier. Theory of holographic optical trapping. Opt. Express, 16, 15765-15776(2008).

    [15] Y. Y. Roichman, B. Sun, Y. Y. Roichman, J. Amato-Grill, D. G. Grier. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 013602(2008).

    [16] J. A. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [17] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, C.-W. W. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [18] P. Figliozzi, N. Sule, Z. Yan, Y. Bao, S. Burov, S. K. Gray, S. A. Rice, S. Vaikuntanathan, N. F. Scherer. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Phys. Rev. E, 95, 022604(2017).

    [19] P. Figliozzi, C. W. Peterson, S. A. Rice, N. F. Scherer. Direct visualization of barrier crossing dynamics in a driven optical matter system. ACS Nano, 12, 5168-5175(2018).

    [20] Y. Yifat, D. Coursault, C. W. Peterson, J. Parker, Y. Bao, S. K. Gray, S. A. Rice, N. F. Scherer. Reactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterers. Light Sci. Appl., 7, 105(2018).

    [21] C. W. Peterson, J. Parker, S. A. Rice, N. F. Scherer. Controlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradients. Nano Lett., 19, 897-903(2019).

    [22] J. A. Rodrigo, T. Alieva. Light-driven transport of plasmonic nanoparticles on demand. Sci. Rep., 6, 33729(2016).

    [23] K. Dholakia, P. Zemánek. Colloquium: gripped by light: optical binding. Rev. Mod. Phys., 82, 1767-1791(2010).

    [24] Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton, N. F. Scherer. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields. ACS Nano, 7, 1790-1802(2013).

    [25] Z. Yan, S. K. Gray, N. F. Scherer. Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters. Nat. Commun., 5, 3751(2014).

    [26] Z. Yan, M. Sajjan, N. F. Scherer. Fabrication of a material assembly of silver nanoparticles using the phase gradients of optical tweezers. Phys. Rev. Lett., 114, 143901(2015).

    [27] F. Han, J. Parker, Y. Yifat, C. Peterson, S. Gray, N. Scherer, Z. Yan. Crossover from positive to negative optical torque in mesoscale optical matter. Nat. Commun, 9, 4897(2018).

    [28] J. A. Rodrigo, M. Angulo, T. Alieva. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. Opt. Express, 26, 18608-18620(2018).

    [29] P. C. Chaumet, M. Nieto-Vesperinas. Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett., 25, 1065-1067(2000).

    [30] V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, F. J. García de Abajo. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev., 37, 1792-1805(2008).

    [31] J. A. Rodrigo, T. Alieva. Polymorphic beams and Nature inspired circuits for optical current. Sci. Rep., 6, 35341(2016).

    [32] A. M. Amaral, E. A. Filho, C. B. de Araújo. Characterization of topological charge and orbital angular momentum of shaped optical vortices. Opt. Express, 22, 30315-30324(2014).

    [33] L. Shao, M. Käll. Light-driven rotation of plasmonic nanomotors. Adv. Funct. Mater., 28, 1706272(2018).

    [34] N. Sule, Y. Yifat, S. K. Gray, N. F. Scherer. Rotation and negative torque in electrodynamically bound nanoparticle dimers. Nano Lett., 17, 6548-6556(2017).

    [35] B. Leimkuhler, C. Matthews. Rational construction of stochastic numerical methods for molecular sampling. Appl. Math. Res. Express, 2013, 34-56(2013).

    [36] N. Sule, S. A. Rice, S. K. Gray, N. F. Scherer. An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion. Opt. Express, 23, 29978-29992(2015).

    [37] M. Sachs, B. Leimkuhler, V. Danos. Langevin dynamics with variable coefficients and nonconservative forces: from stationary states to numerical methods. Entropy, 19, 647(2017).

    [38] R. Zwanzig. Nonequilibrium Statistical Mechanics(2001).

    [39] J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno. Encoding amplitude information onto phase-only filters. Appl. Opt., 38, 5004-5013(1999).

    [40] J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, K. W. Eliceiri. Trackmate: an open and extensible platform for single-particle tracking. Methods, 115, 80-90(2017).

    [41] J. A. Rodrigo, J. M. Soto, T. Alieva. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed. Opt. Express, 8, 5507-5517(2017).

    [42] G. Baffou, P. Berto, E. B. Ureña, R. Quidant, S. Monneret, J. Polleux, H. Rigneault. Photoinduced heating of nanoparticle arrays. ACS Nano, 7, 6478-6488(2013).

    [43] A. Yevick, D. B. Ruffner, D. G. Grier. Tractor beams in the Rayleigh limit. Phys. Rev. A, 93, 043807(2016).

    [44] E. R. Shanblatt, D. G. Grier. Extended and knotted optical traps in three dimensions. Opt. Express, 19, 5833-5838(2011).

    [45] J. A. Rodrigo, M. Angulo, T. Alieva. Programmable optical transport of particles in knot circuits and networks. Opt. Lett., 43, 4244-4247(2018).

    CLP Journals

    [1] Yuanjie Yang, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, Carmelo Rosales-Guzmán. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001

    José A. Rodrigo, Mercedes Angulo, Tatiana Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories[J]. Photonics Research, 2021, 9(1): 1
    Download Citation