• Advanced Photonics
  • Vol. 4, Issue 4, 046004 (2022)
Zhixia Xu1、2、†, Jie Chang2, Jinye Tong2, Daniel F. Sievenpiper3、*, and Tie Jun Cui1、*
Author Affiliations
  • 1Southeast University, State Key Laboratory of Millimeter Waves, Nanjing, China
  • 2Dalian Maritime University, School of Information Science and Technology, Dalian, China
  • 3University of California San Diego, Department of Electrical and Computer Engineering, San Diego, California, United States
  • show less
    DOI: 10.1117/1.AP.4.4.046004 Cite this Article Set citation alerts
    Zhixia Xu, Jie Chang, Jinye Tong, Daniel F. Sievenpiper, Tie Jun Cui. Near-field chiral excitation of universal spin-momentum locking transport of edge waves in microwave metamaterials[J]. Advanced Photonics, 2022, 4(4): 046004 Copy Citation Text show less
    References

    [1] C. L. Kane, E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801(2005).

    [2] B. A. Bernevig, S.-C. Zhang. Quantum spin Hall effect. Phys. Rev. Lett., 96, 106802(2006).

    [3] A. Javadi et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nat. Nanotechnol., 13, 398-403(2018).

    [4] T. Van Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 3, 118-126(2016).

    [5] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [6] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [7] J. Lin et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [8] M. F. Picardi, A. V. Zayats, F. J. Rodríguez-Fortuño. Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking. Phys. Rev. Lett., 120, 117402(2018).

    [9] D. Yi et al. Regulating the direction that power flows in microwave transmission line systems with Huygens sources. IEEE Trans. Antennas Propag., 69, 594-599(2021).

    [10] F. J. Rodríguez-Fortuño et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328-330(2013).

    [11] J. Petersen, J. Volz, A. Rauschenbeutel. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346, 67-71(2014).

    [12] M. F. Picardi et al. Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling. Light Sci. Appl., 8, 52(2019).

    [13] S. Nechayev et al. Huygens’ dipole for polarization-controlled nanoscale light routing. Phys. Rev. A, 99, 041801(2019).

    [14] I. S. Sinev et al. Chirality driven by magnetic dipole response for demultiplexing of surface waves: chirality driven by magnetic dipole response for demultiplexing of surface waves. Laser Photonics Rev., 11, 1700168(2017).

    [15] Y. Long et al. Designing all-electric subwavelength metasources for near-field photonic routings. Phys. Rev. Lett., 125, 157401(2020).

    [16] J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847(2004).

    [17] A. P. Hibbins, B. R. Evans, J. R. Sambles. Experimental verification of designer surface plasmons. Science, 308, 670-672(2005).

    [18] Z. Gao et al. Spoof plasmonics: from metamaterial concept to topological description. Adv. Mater., 30, 1706683(2018).

    [19] J. B. Pendry et al. Compacted dimensions and singular plasmonic surfaces. Science, 358, 915-917(2017).

    [20] J. Yang et al. Symmetry-protected spoof localized surface plasmonic skyrmion. Laser Photonics Rev., 16, 2200007(2022).

    [21] J. Yang et al. Customizing the topological charges of vortex modes by exploiting symmetry principles. Laser Photonics Rev., 16, 2100373(2022).

    [22] J. Duan et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep., 7, 1354(2017).

    [23] X. Shen et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. U. S. A., 110, 40-45(2013).

    [24] H. F. Ma et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev., 8, 146-151(2014).

    [25] S. A. R. Horsley, I. R. Hooper. One dimensional electromagnetic waves on flat surfaces. J. Phys. D: Appl. Phys., 47, 435103(2014).

    [26] D. J. Bisharat, D. F. Sievenpiper. Guiding waves along an infinitesimal line between impedance surfaces. Phys. Rev. Lett., 119, 106802(2017).

    [27] O. Yermakov et al. Surface waves on self-complementary metasurfaces: all-frequency hyperbolicity, extreme canalization, and TE-TM polarization degeneracy. Phys. Rev. X, 11, 031038(2021).

    [28] M. Moccia et al. Line waves in non-Hermitian metasurfaces. ACS Photonics, 7, 2064-2072(2020).

    [29] Z. Xu et al. Line waves existing at junctions of dual-impedance metasurfaces. ACS Photonics, 8, 2285-2293(2021).

    [30] Z. Xu, X. Yin, D. F. Sievenpiper. Adiabatic mode-matching techniques for coupling between conventional microwave transmission lines and one-dimensional impedance-interface waveguides. Phys. Rev. Appl., 11, 044071(2019).

    [31] X. Cheng et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542-548(2016).

    [32] Z. Xu et al. Topological valley transport under long-range deformations. Phys. Rev. Res., 2, 013209(2020).

    [33] Z. Wang et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [34] B. Bahari et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science, 358, 636(2017).

    [35] Y. Poo et al. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett., 106, 093903(2011).

    [36] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [37] L.-H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [38] Y. Yang et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 217401(2018).

    [39] X.-D. Chen et al. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Phys. Rev. B, 96, 020202(2017).

    [40] X.-D. Chen et al. Tunable electromagnetic flow control in valley photonic crystal waveguides. Phys. Rev. Appl., 10, 044002(2018).

    [41] M. L. Tseng et al. Stress-induced 3D chiral fractal metasurface for enhanced and stabilized broadband near-field optical chirality. Adv. Opt. Mater., 7, 1900617(2019).

    [42] F. Ding, R. Deshpande, S. I. Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 7, 17178(2018).

    [43] K. Y. Bliokh et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express, 19, 26132-26149(2011).

    [44] X.-T. He et al. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [45] J. Chen et al. Spin–orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket. ACS Photonics, 9, 793-799(2022).

    [46] Y.-P. Lyu, L. Zhu, C.-H. Cheng. Single-layer broadband phase shifter using multimode resonator and shunt λ/4 stubs. IEEE Trans. Compon. Packag. Manuf. Technol., 7, 1119-1125(2017). https://doi.org/10.1109/TCPMT.2017.2691739

    [47] Z. Xu et al. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies. Sci. Rep., 7, 6098(2017).

    [48] X. Kong et al. Analytic theory of an edge mode between impedance surfaces. Phys. Rev. A, 99, 033842(2019).

    [49] M. B. de Paz et al. Tutorial: computing topological invariants in 2D photonic crystals. Adv. Quantum Technol., 3, 1900117(2020).

    [50] J. Chen et al. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev., 12, 1700331(2018).

    [51] H. C. Zhang et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light Sci. Appl., 9, 113(2020).

    [52] Y. Zeng et al. Electrically pumped topological laser with valley edge modes. Nature, 578, 246-250(2020).

    [53] M. A. Bandres et al. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [54] X. Tian et al. Wireless body sensor networks based on metamaterial textiles. Nat. Electron., 2, 243-251(2019).

    [55] S. Ma, S. M. Anlage. Microwave applications of photonic topological insulators. Appl. Phys. Lett., 116, 250502(2020).

    [56] Y. Yang et al. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [57] M. I. Shalaev et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol., 14, 31-34(2019).

    [58] F. J. Garcia-Vidal et al. Spoof surface plasmon photonics. Rev. Mod. Phys., 94, 025004(2022).

    [59] X. Gao et al. Nonmagnetic spoof plasmonic isolator based on parametric amplification. Laser Photonics Rev., 16, 2100578(2022).

    [60] Y. J. Zhou et al. Gain-assisted active spoof plasmonic Fano resonance for high-resolution sensing of glucose aqueous solutions. Adv. Mater. Technol., 5, 1900767(2020).

    [61] L. Y. Niu et al. Gain-associated nonlinear phenomenon in single-conductor odd-mode plasmonic metamaterials. Laser Photonics Rev., 16, 2100619(2022).

    [62] D. J. Bisharat, D. F. Sievenpiper. Manipulating line waves in flat graphene for agile terahertz applications. Nanophotonics, 7, 893-903(2018).

    [63] J. W. You et al. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [64] C. Liu et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron., 5, 113-122(2022).

    [65] L. Zhang et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron., 4, 218-227(2021).

    [66] M. Wang et al. Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line. IEEE Trans. Antennas Propag., 66, 4449-4457(2018).

    [67] H. C. Zhang et al. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv. Mater. Technol., 2, 1600202(2017).

    [68] D. Sievenpiper et al. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Technol., 47, 2059-2074(1999).

    [69] Z. Xu et al. Broadside radiation from Chern photonic topological insulators. IEEE Trans. Antennas Propag., 70, 2358-2363(2022).

    [70] Y. Lumer, N. Engheta. Topological insulator antenna arrays. ACS Photonics, 7, 2244-2251(2020).

    [71] Z. Zhang et al. Directional acoustic antennas based on valley-Hall topological insulators. Adv. Mater., 30, e1803229(2018).

    Zhixia Xu, Jie Chang, Jinye Tong, Daniel F. Sievenpiper, Tie Jun Cui. Near-field chiral excitation of universal spin-momentum locking transport of edge waves in microwave metamaterials[J]. Advanced Photonics, 2022, 4(4): 046004
    Download Citation