
Near-field chiral excitation of universal
spin-momentum locking transport of edge waves
in microwave metamaterials
Zhixia Xu ,a,b,† Jie Chang,b,† Jinye Tong,b Daniel F. Sievenpiper,c,* and Tie Jun Cuia,*
aSoutheast University, State Key Laboratory of Millimeter Waves, Nanjing, China
bDalian Maritime University, School of Information Science and Technology, Dalian, China
cUniversity of California San Diego, Department of Electrical and Computer Engineering, San Diego, California, United States

Abstract. Controlling energy flow in waveguides has attractive potential in integrated devices from radio
frequencies to optical bands. Due to the spin-orbit coupling, the mirror symmetry will be broken, and
the handedness of the near-field source will determine the direction of energy transport. Compared
with well-established theories about spin-momentum locking, experimental visualization of unidirectional
coupling is usually challenging due to the lack of generic chiral sources and the strict environmental
requirement. In this work, we design a broadband near-field chiral source in the microwave band
and discuss experimental details to visualize spin-momentum locking in three different metamaterial
waveguides, including spoof surface plasmon polaritons, line waves, and valley topological insulators.
The similarity of these edge waves relies on the abrupt sign change of intrinsic characteristics of
two media across the interface. In addition to the development of experimental technology, the
advantages and research status of interface waveguides are summarized, and perspectives on future
research are presented to explore an avenue for designing controllable spin-sorting devices in the
microwave band.
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1 Introduction
The quantum spin-Hall state is an electronic surface state with
immunity against defects.1 The momentum is locked to the in-
trinsic spin of electrons, and backward transports are suppressed
unless the spin flips.2,3 Analogous phenomena have been widely
reported in various uniform and metamaterial waveguides,
where theories of universal spin-momentum locking4 and spin-
orbit interactions5,6 have been well studied. Uniform waveguides
include closed metal waveguides, fibers, and plasmonic metals,
where the unidirectional transmission can be realized based on
nano-gratings,7 circularly polarized (CP) dipoles or Huygens

dipoles8,9 supported by resonant particles.10–14 Metamaterial
waveguides consist of various artificial unit cells, where chiral
sources carrying spin angular momentum (SAM) and orbital an-
gular momentum (OAM) can interact with unit cells in versatile
ways to realize unidirectional coupling.15 Recent research inter-
est is mainly in metamaterial interfaces supporting edge waves.
As shown in Fig. 1(a), two metamaterials are stitched together
to construct an infinitely thin interface to support edge waves,
such as spoof surface plasmon polaritons (SPPs), line waves
(LWs), and photonic topological insulators (PTIs). All these
kinds of edge waves are related to flipping change of intrinsic
characteristics of media across the interface, as shown in
Figs. 1(b)–1(d).

It is beneficial to further design generic chiral sources and
visualize unidirectional coupling in different metamaterial
waveguides. Spoof SPPs exist on the interface between the
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dielectric medium with positive permittivity (εair > 0) and peri-
odic metallic structures with negative effective permittivity
(εeff < 0),16–19 as shown in Fig. 1(b). Spoof SPPs contain fruitful
phenomena related to spin-orbit momentum.20,21 It is convenient
to use modulated gratings to couple CP spatial waves to uni-
directional spoof SPPs on an open metasurface.22 However,
it is challenging to apply similar technology to one-dimensional
infinitely thin spoof SPPs transmission lines23,24 due to the small
cross section. Therefore, one purpose of this work is to develop
a near-field chiral source to visualize spin-momentum locking in
spoof SPPs transmission lines. LWs exist in the interface of a
pair of metasurfaces with duality symmetry, such as reactance
duality (ZTM > 0 and ZTE < 0)25–27 or resistance duality (gain
and loss),28 as shown in Fig. 1(c). LWs have been experimentally
observed by linearly polarized feedings;29,30 however, unidirec-
tional coupling stays in the simulation stage,28,29 where related
experiments are still lacking. Therefore, the second part of this
work is to visualize the spin-momentum locking of LWs. PTIs
show flipping Berry phase in topological space, as shown in
Fig. 1(d). The chirality of eigenmodes of unit cells determines
the robust transmission direction along the edge.31,32 Spin-
momentum locking can be realized with a linearly polarized
source in Chern PTIs because the time symmetry is broken.33–35

However, in valley topological waveguides, chiral eigenmodes
require spin-orbit coupling.36 The coupling theory was first
studied in a pseudo-spin structure37 and proved by experiments.38

Connections between OAM and valley transmission were also
reported.39,40 It is important to further measure unidirectional
valley PTIs, which is the third part of this work.

This work presents near-field experiments to visualize unidi-
rectional edge waves in various metamaterial waveguides. By
flipping the chirality of the source, we can control the direction
of energy coupling. The presented experimental methodology is
universal and tutorial to realize spin-sorting metamaterial devi-
ces in the microwave band. We further compare characteristics
of different waveguides, summarize research status, and present
perspectives regarding the following challenges and future spin-
sorting metamaterial devices implanted with modern coding
techniques.

2 Results

2.1 Angular Momentum

Chiral sources carrying SAM and OAM are the key to couple
metamaterial waveguides with spin-momentum locking.
Figures 2(a) and 2(b) show two feeding configurations used
in this work.

SAM (helicity σ ¼ �1) is realized by the spinning electric
vector consisting of orthogonal electric components with
π∕2-phase difference. We take a short review of the spin-mo-
mentum locking theory.4 The complex wavevector of evanescent
waves is in a general form as k ¼ k0 þ ik00. k0 is the real part
related to the phase constant, and k00 is the imaginary part related
to the decay. k0 and k00 are orthogonal, and we can divide evan-
escent waves into two polarizations denoted by ŝ and p̂. ŝ is
perpendicular to the plane formed by k0 and k00, while p̂ is in
the plane,

ŝ ¼ i
k × k�

jk × k�j ; (1)

p̂ ¼ i
k × ðk × k�Þ
jkjjk × k�j ; (2)

and, we further substitute the complex form of wavevector into
Eq. (2) and obtain

p̂ ¼ i

�
k00

jkj
�
k0

k0

�
þ i

k0

jkj
�
k00

k00

��
; (3)

where the combination of orthogonal vectors indicates a π∕2-
phase difference in p̂, verifying an elliptically polarized field
whose spin direction can be represented by the purely real ŝ.
As the slow-wave effect is enhanced, both real and imaginary
parts of the wavevector become larger (jk0j ≈ jk00j ≫ k0), and
the field becomes nearly perfectly CP. Therefore, we can lock

Fig. 1 Spin-momentum locking exists at the interface of two metamaterials. (a) The chirality of the
source decides the transmission direction. Unidirectional transmission at the interface between:
(b) spoof SPPs: air and corrugated structures (εair > 0, εeff < 0); (c) LWs: dual-impedance surfaces
(ZTM > 0, ZTE < 0); and (d) PTIs: Berry phase flips.
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the direction of coupling by placing a CP source around the
interface, as shown in Fig. 2(c). As examples, various CP-
sensitive metamaterials were proposed to realize unidirectional
performance.41,42

OAM is dependent on the chiral phase distribution of the
field. The polarization of the probes is identical, but the chiral
phase carries OAM with the vortex charge (l ¼ 0;�1;�2…),
which represents the total phase change (2π × l) along a closed
circle. SAM and OAM can transfer between each other by
focusing or scattering.6,43 As shown in Fig. 2(d), assuming an
incoming CP electric field (E) in the global circular basis of
(xþ iσy)-polarizations and the z component, we can obtain
the scattering field (Es) from a particle as43

Es ¼

2
64

1þ a −be−i2ϕ − ffiffiffiffiffiffiffiffi
2ab

p
e−iϕ

−bei2ϕ 1þ a − ffiffiffiffiffiffiffiffi
2ab

p
eiϕ

− ffiffiffiffiffiffiffiffi
2ab

p
eiϕ − ffiffiffiffiffiffiffiffi

2ab
p

e−iϕ 2b2

3
75E; (4)

where a ¼ cos2 θ and b ¼ sin2 θ. The off-diagonal elements are
responsible for SAM-OAM conversion, which is the theoretical
background for unidirectional coupling based on lens and
nanoparticles.11,44,45

To feed the chiral probe array, we designed a broadband
power divider with the π∕2-phase-shifting function. Figure 2(e)
shows the five-port feeding network designed for measure-
ments. The fabricated circuit consists of three power-dividers
and three pairs of phase shifters,46 whose detailed structure is
presented in the Supplementary Material. Figures 2(f) and
2(g) show the measured amplitude and phase relationships at
different ports. Results indicate that signals at the four out-ports
keep almost the same amplitude with the desired phase shift
from 5 to 12 GHz.

2.2 Spoof SPPs

The proposed platform to observe spoof SPPs is shown in
Fig. 3(a), where ideal absorptive terminals are based on two kinds
of slots loading with gradient resistors,47 as shown in Fig. 3(b).
The corrugated metallic structure supports spoof SPPs on the
interface, and the electric field vectors have spin momentum,
deciding the energy transport direction shown in Fig. 3(c). The
depth of the slot decides the cut-off frequency of spoof SPPs,
as shown in Fig. 3(d). When the frequency is above 5 GHz
and below 15 GHz, the shallow slots can support spoof SPPs,
while deep slots avoid detouring waves. Therefore, spoof SPPs
are bounded along the route along the y axis. Animated compar-
isons of spoof SPPs on different structures are shown to demon-
strate the importance of the terminal designs.

The experimental setup is shown in Fig. 4(a). The CP source
consists of a pair of orthogonal electric probes of negligible elec-
tric size and is placed at the center of the structure. With the CP
source, we use two linearly polarized electric probes to record the
transmission energy at two terminals of the structure. The right
hand circularly polarized (RHCP) source can direct energy toward
the right, and the energy level received at the left terminal is much
lower, as shown in Fig. 4(b). We further set up RHCP and left
hand circularly polarized (LHCP) sources to record the energy
distribution along the edge, as shown in Fig. 4(c), verifying that
sources with opposite chirality can direct energy toward opposite
directions. The two-dimensional (2D) electric field distribution of
the planar structure is shown in Fig. 4(d), where the forward trans-
port is much stronger than the backward transport. Figure 4(e)
demonstrates a conformal situation where spoof SPPs can travel
on a curved surface and unidirectional coupling can still be ob-
served in Fig. 4(f), indicating the robustness of spin-momentum
locking on the flexible surface. Experiments match well with sim-
ulations, as shown in Videos 1 and 2.

Fig. 2 Two chiral sources carrying (a) SAM and (b) OAM. (c) Spin-momentum locking phenome-
non. (d) SAM-OAM conversion. (e) Five-ports-feeding network and measured performance:
(f) balanced amplitude and (g) π∕2-phase step.
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2.3 LWs

Two metasurfaces with opposite reactance are designed, as
shown in Fig. 5(a), where the enlarged illustration shows the
configuration of a CP source with a pair of orthogonal electric

dipoles with a π∕2-phase difference. The periodic serpentine acts
as an inductive surface and can be named ZTM surfaces because
the fundamental surface mode is transverse magnetic (TM)
polarization. The interdigitated patch array acts as a capacitive
surface and can be named ZTE surfaces because the fundamental

Fig. 3 (a) Spoof SPPs under study. (b) Enlarged absorptive terminal design. (c) Electric field vec-
tor of spoof SPPs with spin-momentum locking. (d) Dispersion curves of two spoof SPPs (SSPPs).

Fig. 4 Visualization of unidirectional spoof SPPs. (a) The near-field scanning setup.
(b) Transmission at two opposite terminals excited by an RHCP source. (c) Measured
distribution of the out-of-plane electric field (Ez ) at 10 GHz along the transmission route.
(d) Field distributions on the 2D surface. (e) The planar structure is wrapped on the surface of
a cylinder. (f) Unidirectional coupling on the surface of the cylinder [unidirectional planar
spoof SPPs (Video 1, MP4, 2.26 MB [URL: https://doi.org/10.1117/1.AP.4.4.046004.1]) and uni-
directional conformal spoof SPPs (Video 2, MP4, 1.59 MB [URL: https://doi.org/10.1117/
1.AP.4.4.046004.2)].
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surface mode is transverse electric (TE) polarization. The cross
section of the electric field distribution is shown in Fig. 5(b).
The electric field vector is mainly perpendicular to the ZTM sur-
face but parallel to the ZTE surface. At the interface between two
surfaces, energy is concentrated, and electric field vectors twist.
Simulated dispersion curves of two surface modes and LWs are
plotted in Fig. 5(c), and the equivalent surface reactance can be
extracted from the phase constant.29 The authors proposed and
analyzed the structures recently,29 but related experiments to
visualize the spin-momentum locking are challenging and have
been solved in this work.26,27,29,48

We set up the experimental environment as shown in
Fig. 6(a). CST Studio Suite is utilized to conduct simulations,
and results are shown in Fig. 6(b). The CP source is placed be-
neath the metasurface. A linearly polarized probe is used to rec-
ord the electric field distribution on the surface. The measured
electric field distribution is shown in Fig. 6(c). Excited by the
LHCP source, energy is directed toward the left side. We com-
pare the animation of simulated and measured field distributions

in Video 3, and the consistency can verify the existence of uni-
directional transport. The visualization of LWs is not as clear as
that of spoof SPPs because two metasurfaces on both sides can
support the surface waves whose operating frequencies overlap
with LWs, as shown in Fig. 5(c). It is challenging to suppress
the unwanted surface waves when we excite the LWs with a
CP source that has the omnidirectional radiation pattern.
More work remains to be done to improve the structure of feed-
ing probes.

2.4 PTIs

The valley waveguide under study is based on 10-mm height
alumina rods with two PEC plates on top and bottom layers
to restrict waves in the structure as TM modes with an out-
of-plane electric field (Ez), as shown in Fig. 7(a). A cardboard
made by a laser engraving procedure is placed in the middle of
two PEC plates to fix dielectric rods. Figure 7(b) shows the
analysis of the unit cell. We can observe the opening of the

Fig. 5 (a) Structure of the LWs waveguide under study. (b) Electric field distribution at the x -z
cross section. (c) Dispersion curves of surface modes and LWs, and equivalent surface reactance
can be calculated. Black solid line: dispersion curves of surface waves and LWs. Gray dashed line:
light cone. Colored dashed line: extracted surface impedance.

Fig. 6 Visualization of unidirectional LWs. (a) The near-field scanning setup. (b) Simulated
electric field (Ez ) distribution on the surface of the planar structure where we set up uniform
equivalent impedance surfaces as a simplified simulation model. (c) Measured electric field (Ez )
distribution [unidirectional LWs (Video 3, MP4, 2.99 MB [URL: https://doi.org/10.1117/1.AP.4.4
.046004.3])].
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Dirac cone at highly symmetric points when the structure trans-
forms from C6- to C3-symmetric, and the corresponding intrin-
sic OAM (l ¼ �1) of the eigenmode is reflected in the phase
distribution.39 Therefore, we can place a chiral source with
OAM (l ¼ �1) at the center of a unit cell to couple the unidi-
rectional valley transport. The Berry curvature is calculated
based on the four-point formula procedure.49 The superlattice
simulation is shown in Fig. 7(c); the dispersion curves and en-
ergy confinement at the interface verify the existence of topo-
logical edge waves within the bandgap.

It is interesting to further discuss the performance of different
OAM sources. We consider two parameters: different vortex
charge jlj and different phase stepping Δφ. By modeling differ-
ent sources (Supplementary Material), we analyze the corre-
sponding unidirectional coupling spectra, as shown in Figs. 7(d)
and 7(e). Two findings are summarized as follows.

1. The first-order OAM (l ¼ �1) is the best choice to
realize the unidirectional coupling of the first-order valley PTIs
because the eigen phase distribution of a unit cell decides that
the vortex charge number equals �1.

2. π∕2-phase sampling is sufficient. By fixing the vortex
charge (l ¼ 1) and changing the sampling number, we can op-
timize the performance slightly when Δφ decreases from 2π∕3
to π∕2, but the performance no longer shows any improvement
when further decreasing Δφ.

The experimental setup is shown in Fig. 8(a), where the
source carrying OAM (l ¼ 1) is placed in the center of a unit
cell beside the interface. It is a general concept that robust uni-
directional PTIs can radiate at open terminals without obvious
reflection.36 However, it is still unclear whether we can change
the terminal shape without generating reflection. Inspired by
horn antennas, we propose a horn-type terminal to guide valley
PTIs toward the center of the open terminal as shown in
Fig. 8(b). The traditional open terminal36 as a counterpart has
a splitting distribution at the aperture. We record the field
distributions at different terminals to verify the correctness
of the simulation, as shown in Fig. 8(c). The concentrated
and the splitting distributions match well with simulations,
although the unidirectional coupling exists in both structures.
Transmission is recorded by a linearly polarized probe, as
shown in Fig. 8(d), where unidirectional valley PTIs exist within
the bandgap. Animations of the valley PTIs at different termi-
nals are compared in Videos 4 and 5.

3 Perspectives
Based on the generic chiral sources, we conducted microwave
experiments to visualize unidirectional coupling in different
metamaterial waveguides. We compare the key characteristics
in Table 1 and present perspectives regarding applications and
challenges in the future.

Fig. 7 (a) The valley waveguide. (b) Unit cell analysis: topological bandgap, intrinsic OAM
(l ¼ �1), and flipping Berry curvature. (c) Superlattice analysis: dispersion and field distributions
of valley PTIs at two different interfaces. Unidirectional OAM coupling with (d) different vortex
charges l and (e) different phase step Δφ. The transmission is defined by the proportion of
received energy at terminals (left/right) and the total energy of the source: T ¼ P left∕right∕Psource.
The maximum transmission (T ¼ 1) represents an ideal unidirectional coupling.
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Three waveguides all have chiral sorting abilities. Incident
waves with SAM and OAM can excite the unidirectional
transmission.7,50 As similar evanescent waves, LWs inherit most
features of spoof SPPs, but the unidirectional LWs based on
OAM remain unsolved. Unlike the spoof SPPs and LWs stem-
ming from the complex wavevector of evanescent waves, the
unidirectional PTIs rely on the eigenmodes carrying SAM
and OAM.36,37,39 Spoof SPPs and LWs can exist over a broad
band, indicating the potentials in broadband communication
systems;51 however, PTIs only exist within a narrow photonic
bandgap. The narrow bandwidth of PTIs limits the communica-
tion capability but has advantages in designing high-Q and ro-
bust cavities in laser applications.52,53 Another difference is the
wave velocity. Spoof SPPs and LWs are slow waves, while the
closed PTIs waveguides can support both slow and fast waves
without leakage. From the perspective of assembly process, peo-
ple can use flexible substrates, such as polyimide, to guide the
spoof SPPs and LWs along curved surfaces,18,23,29 indicating the
potential applications in wearable networks.54 PTIs usually exist
in solid hole-slab or pillars, losing the flexibility. However, the

unique immunity against defects is under topological protection,
which can be the key for non-reciprocal devices33,34,55 and on-
chip high robust links.56,57

The scale of semiconductor devices is much smaller than the
wavelength; therefore, it is crucial to explore device-assisted
metamaterials beyond the conventional structural designs.
Recently, plenty of exotic spoof SPPs components have been
reported,58 such as parametric amplifiers,59 active Fano sensors,60

and nonlinear harmonic generators.61 Compared to vigorous
active spoof SPPs, the device-assisted technology is still a virgin
land in LWs and PTIs because they require loading devices in
the form of 2D arrays. The concept of device-assisted LWs was
first reported as a terahertz tunable simulation model based on
graphene,62 lacking further experimental work. Meanwhile, the
first device-assisted PTIs platform was reported recently,63 and
more fruitful work remains to be explored.

The future direction of spin-sorting metamaterials could
be in the hybrid form of massive loading devices and novel
structures. Related embedding fabrication and controlling tech-
nologies have shown significant achievements in recent digital

Fig. 8 Visualization of unidirectional valley PTIs. (a) Near-field scanning setup. (b) Simulated
electric field distributions of two waveguides with horn-type and straight-line-type terminals.
(c) Measured electric field distribution at opposite terminals. (d) Measured unidirectional transmis-
sion [unidirectional valley PTIs with the horn-type terminal (Video 4, MP4, 1.32 MB [URL: https://
doi.org/10.1117/1.AP.4.4.046004.4]) and unidirectional valley PTIs with the straight-line-type ter-
minal (Video 5, MP4, 1.26 MB [URL: https://doi.org/10.1117/1.AP.4.4.046004.5])].

Table 1 Characteristics of Three Waveguides in the Microwave Band

Metamaterial
waveguides

Chiral
sorting

Working
bandwidth

Wave
velocity

Transmission
robustness Potential applications

Device-
assisted

Spoof SPPs SAM/OAM Broadband Slow Flexibility Wearable, compact circuits Vigorous

LWs SAM/OAM Broadband Slow Flexibility Multifunctional metasurfaces Unexplored

PTIs SAM/OAM Narrow Slow/fast Immunity Isolators and cavities Early stage
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coding metasurfaces64,65 and will be transferred to the field of
spin-sorting metamaterials. Combining the device-assisted
metamaterials and controllable feeding circuits, we can tailor
metamaterial waveguides and the source carrying angular mo-
mentum simultaneously. Furthermore, we illustrate some re-
search directions to be explored in Fig. 9. The digital coding
spoof SPPs have been widely discussed in recent years, and
many tunable devices have been reported.66,67 However, the
degree of chiral freedom has not been fully implanted into the
spoof SPPs systems. Dynamic control of the energy flow is
possible based on the experimental technology reported in this
work. Coding LWs is more complex than the spoof SPPs, but
some exciting potentials are unique. The digital coding imped-
ance characteristics can construct arbitrary transmission routes
on the surface. Meanwhile, the scattering from metasurface de-
cided by surface impedance68 can be fully controllable, indicat-
ing a powerful platform to control surface and space waves at
the same time. Future research on the coding PTIs can be fo-
cused on dynamic tailoring of the topological invariant, which
decides the edge modes on the interface. Combining the recent
progress in the topological radiation,69–71 we can further develop
robust multiplexers and antenna arrays, which will be highly
integrated with future wireless systems.

4 Conclusion
We developed the experimental technologies to visualize the
unidirectional transports of edge waves in three different meta-
material waveguides in the microwave band. The key mecha-
nism behind spoof SPPs, LWs, and PTIs is the abrupt sign
change of different intrinsic properties of artificial media across
the interface. We discussed the advantages and research status
and presented an outlook for future metamaterial devices based
on modern digital coding technology and controllable spin-
momentum locking.
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