• Photonics Research
  • Vol. 10, Issue 2, 594 (2022)
Haolin Li1、2、†, Xuanyu Zhang2、†, Haizhen Wang3, Jiahao Yu2, Kexue Li1, Zhipeng Wei1、4、*, Dehui Li3、5、*, and Rui Chen2、6、*
Author Affiliations
  • 1State Key Laboratory of High Power Semiconductor Laser, School of Science, Changchun University of Science and Technology, Changchun 130022, China
  • 2Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 3School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 4e-mail: zpweicust@126.com
  • 5e-mail: dehuili@hust.edu.cn
  • 6e-mail: chenr@sustech.edu.cn
  • show less
    DOI: 10.1364/PRJ.444457 Cite this Article Set citation alerts
    Haolin Li, Xuanyu Zhang, Haizhen Wang, Jiahao Yu, Kexue Li, Zhipeng Wei, Dehui Li, Rui Chen. Optical characteristics of self-trapped excitons in 2D (iso-BA)2PbI4 perovskite crystals[J]. Photonics Research, 2022, 10(2): 594 Copy Citation Text show less
    References

    [1] Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. Liang. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv. Mater., 30, 1703487(2018).

    [2] G. Grancini, M. K. Nazeeruddin. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater., 4, 4-22(2018).

    [3] C. Katan, N. Mercier, J. Even. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev., 119, 3140-3192(2019).

    [4] B. Zhou, L. Liang, J. Ma, J. Li, W. Li, Z. Liu, H. Li, R. Chen, D. Li. Thermally assisted Rashba splitting and circular photogalvanic effect in aqueously synthesized 2D Dion-Jacobson perovskite crystals. Nano Lett., 21, 4584-4591(2021).

    [5] J. Yu, J. Kong, W. Hao, X. Guo, H. He, W. R. Leow, Z. Liu, P. Cai, G. Qian, S. Li, X. Chen, X. Chen. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv. Mater., 31, 1806385(2019).

    [6] Z. Guo, X. Wu, T. Zhu, X. Zhu, L. Huang. Electron-phonon scattering in atomically thin 2D perovskites. ACS Nano, 10, 9992-9998(2016).

    [7] Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su, K. Zheng, T. Pullerits, Z. Liang. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater., 7, 1700162(2017).

    [8] L. Mao, Y. Wu, C. C. Stoumpos, M. R. Wasielewski, M. G. Kanatzidis. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc., 139, 5210-5215(2017).

    [9] C. Quarti, N. Marchal, D. Beljonne. Tuning the optoelectronic properties of two-dimensional hybrid perovskite semiconductors with alkyl chain spacers. J. Phys. Chem. Lett., 9, 3416-3424(2018).

    [10] K. Zheng, Y. Chen, Y. Sun, J. Chen, P. Chábera, R. Schaller, M. J. Al-Marri, S. E. Canton, Z. Liang, T. Pullerits. Inter-phase charge and energy transfer in Ruddlesden-Popper 2D perovskites: critical role of the spacing cations. J. Mater. Chem. A, 6, 6244-6250(2018).

    [11] R. Gautier, M. Paris, F. Massuyeau. Exciton self-trapping in hybrid lead halides: role of halogen. J. Am. Chem. Soc., 141, 12619-12623(2019).

    [12] M. D. Smith, B. A. Connor, H. I. Karunadasa. Tuning the luminescence of layered halide perovskites. Chem. Rev., 119, 3104-3139(2019).

    [13] T. Hu, M. D. Smith, E. R. Dohner, M. J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X. Y. Zhu, H. I. Karunadasa, A. M. Lindenberg. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett., 7, 2258-2263(2016).

    [14] J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 563, 541-545(2018).

    [15] O. Nazarenko, M. R. Kotyrba, S. Yakunin, M. Aebli, G. Raino, B. M. Benin, M. Worle, M. V. Kovalenko. Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature. J. Am. Chem. Soc., 140, 3850-3853(2018).

    [16] S. Wang, Y. Yao, J. Kong, S. Zhao, Z. Sun, Z. Wu, L. Li, J. Luo. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite. Chem. Commun., 54, 4053-4056(2018).

    [17] L. Chao, Z. Wang, Y. Xia, Y. Chen, W. Huang. Recent progress on low dimensional perovskite solar cells. J. Energy Chem., 27, 1091-1100(2018).

    [18] C. Ma, D. Shen, T. W. Ng, M. F. Lo, S. Lee. 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater., 30, 1800710(2018).

    [19] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater., 13, 476-480(2014).

    [20] J. Guo, T. Liu, M. Liu, C. Liang, K. Wang, G. Hong, Y. Tang, G. Long, S.-F. Yu, T.-W. Lee, W. Huang, G. Xing. Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nat. Commun., 11, 3361(2020).

    [21] Z. Chen, Y. Guo, E. Wertz, J. Shi. Merits and challenges of Ruddlesden-Popper soft halide perovskites in electro-optics and optoelectronics. Adv. Mater., 31, 1803514(2019).

    [22] J. Li, J. Wang, J. Ma, H. Shen, L. Li, X. Duan, D. Li. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun., 10, 806(2019).

    [23] L. Li, L. Jin, Y. Zhou, J. Li, J. Ma, S. Wang, W. Li, D. Li. Filterless polarization‐sensitive 2D perovskite narrowband photodetectors. Adv. Opt. Mater., 7, 1900988(2019).

    [24] X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, X. Y. Zhu. Trap states in lead iodide perovskites. J. Am. Chem. Soc., 137, 2089-2096(2015).

    [25] J. Li, H. Wang, D. Li. Self-trapped excitons in two-dimensional perovskites. Front. Optoelectron., 13, 225-234(2020).

    [26] W. B. Fowler, M. J. Marrone, M. N. Kabler. Theory of self-trapped exciton luminescence in halide crystals. Phys. Rev. B, 8, 5909-5919(1973).

    [27] R. T. Williams, K. S. Song, W. L. Faust, C. H. Leung. Off-center self-trapped excitons and creation of lattice defects in alkali halide crystals. Phys. Rev. B, 33, 7232-7240(1986).

    [28] D. Menzel. Valence and core excitations in rare gas mono- and multilayers: production, decay, and desorption of neutrals and ions. Appl. Phys. A, 51, 163-171(1990).

    [29] C. Itoh, K. Tanimura, N. Itoh. Optical studies of self-trapped excitons in SiO2. J. Phys. C, 21, 4693-4702(1988).

    [30] S. Yamaoka, Y. Furukawa, M. Nakayama. Initial process of photoluminescence dynamics of self-trapped excitons in a β-Ga2O3 single crystal. Phys. Rev. B, 95, 094304(2017).

    [31] R. Scholz, A. Y. Kobitski, D. R. T. Zahn, M. Schreiber. Investigation of molecular dimers in α-PTCDA by ab initio methods: binding energies, gas-to-crystal shift, and self-trapped excitons. Phys. Rev. B, 72, 245208(2005).

    [32] K. M. McCall, C. C. Stoumpos, S. S. Kostina, M. G. Kanatzidis, B. W. Wessels. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater., 29, 4129-4145(2017).

    [33] S. Li, J. Luo, J. Liu, J. Tang. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J. Phys. Chem. Lett., 10, 1999-2007(2019).

    [34] T. Li, X. Chen, X. Wang, H. Lu, Y. Yan, M. C. Beard, D. B. Mitzi. Origin of broad-band emission and impact of structural dimensionality in tin-alloyed Ruddlesden-Popper hybrid lead iodide perovskites. ACS Energy Lett., 5, 347-352(2019).

    [35] S.-T. Ha, C. Shen, J. Zhang, Q. Xiong. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics, 10, 115-121(2015).

    [36] X. Ma, F. Pan, H. Li, P. Shen, C. Ma, L. Zhang, H. Niu, Y. Zhu, S. Xu, H. Ye. Mechanism of single-photon upconversion photoluminescence in all-inorganic perovskite nanocrystals: the role of self-trapped excitons. J. Phys. Chem. Lett., 10, 5989-5996(2019).

    [37] Y. Liang, Q. Shang, Q. Wi, L. Zhao, Z. Liu, J. Shi, Y. Zhong, J. Chen, Y. Gao, M. Li, X. Liu, G. Xing, Q. Zhang. Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater., 31, 1903030(2019).

    [38] S. Wang, J. Ma, W. Li, J. Wang, H. Wang, H. Shen, J. Li, J. Wang, H. Luo, D. Li. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron-phonon interaction. J. Phys. Chem. Lett., 10, 2546-2553(2019).

    [39] W. Li, J. Ma, H. Wang, C. Fang, H. Luo, D. Li. Biexcitons in 2D (iso-BA)2PbI4 perovskite crystals. Nanophotonics, 9, 2001-2006(2020).

    [40] T. Schmidt, K. Lischka, W. Zulehner. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B, 45, 8989-8994(1992).

    [41] B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, X. Zhao. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys. Chem. Chem. Phys., 19, 17349-17355(2017).

    [42] X. Y. Zhang, G. T. Pang, G. C. Xing, R. Chen. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film. Mater. Today Phys., 15, 100259(2020).

    [43] X. Lao, W. Zhou, Y. Bao, X. Wang, Z. Yang, M. Wang, S. Xu. Photoluminescence signatures of thermal expansion, electron-phonon coupling and phase transitions in cesium lead bromide perovskite nanosheets. Nanoscale, 12, 7315-7320(2020).

    [44] M. A. Collins, D. P. Craig. A model of localization, soliton propagation, and self-trapping in an electronically excited atomic lattice. Chem. Phys., 75, 191-214(1983).

    [45] K. Tanimura, N. Itoh. The hopping motion of the self-trapped exciton in NaCl. J. Phys. Chem. Solid, 42, 901-910(1981).

    [46] R. Leonlli, J. L. Brebner. Time-resolved spectroscopy of the visible emission band in strontium titanate. Phys. Rev. B, 33, 8649-8656(1986).

    [47] P. G. E. Dan Popescu, A. Stintz, K. J. Malloy. Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well. Semicond. Sci. Technol., 19, 33-38(2003).

    [48] R. Chen, H. Y. Liu, H. D. Sun. Electronic energy levels and carrier dynamics in InAs/InGaAs dots-in-a-well structure investigated by optical spectroscopy. J. Appl. Phys., 107, 013513(2010).

    [49] Z. G. Yu. Optical deformation potential and self-trapped excitons in 2D hybrid perovskites. Phys. Chem. Chem. Phys., 21, 22293-22301(2019).

    Haolin Li, Xuanyu Zhang, Haizhen Wang, Jiahao Yu, Kexue Li, Zhipeng Wei, Dehui Li, Rui Chen. Optical characteristics of self-trapped excitons in 2D (iso-BA)2PbI4 perovskite crystals[J]. Photonics Research, 2022, 10(2): 594
    Download Citation