• Laser & Optoelectronics Progress
  • Vol. 58, Issue 9, 0924001 (2021)
Song Xiang, Xinyu Zhang, and Luogen Deng*
Author Affiliations
  • School of Physics, Beijing Institute of Technology, Beijing 100081China
  • show less
    DOI: 10.3788/LOP202158.0924001 Cite this Article Set citation alerts
    Song Xiang, Xinyu Zhang, Luogen Deng. Plasmon Mode Coupling Relationship and Optical Properties of Composite Structure[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0924001 Copy Citation Text show less
    References

    [1] Zhi T, Tao T, Liu B et al. Surface plasmon semiconductor nanolaser[J]. Chinese Journal of Lasers, 47, 0701010(2020).

    [2] Li Y. Design of sub wavelength filter based on surface plasmon[D], 1-3(2019).

    [3] Liu Z, Yang Z B, Peng B et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Fla, 26, 2431-2439(2014).

    [4] Li J F, Li C Y, Aroca R F et al. Plasmon-enhanced fluorescence spectroscopy[J]. Chemical Society Reviews, 46, 3962-3979(2017).

    [5] Liu P C, Chang M Y, Bai Z C et al. Enhanced fluorescence of CdSe/Al2O3 heterojunctions enabled by TiN nanoparticles[J]. Chinese Journal of Lasers, 47, 0913001(2020).

    [6] Butet J, Brevet P F, Martin O J F et al. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications[J]. ACS Nano, 9, 10545-10562(2015).

    [7] Superfine R, Sionnest P G, Hunt J H et al. Surface vibrational spectroscopy of molecular adsorbates on metals and semiconductors by infrared-visible sum-frequency generation[J]. Surface Science, 200, 445-450(1988).

    [8] Baldelli S, Eppler A S, Anderson E et al. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays[J]. The Journal of Chemical Physics, 113, 5432(2000).

    [9] Link S, Burda C, Mohamed M B et al. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence[J]. The Journal of Physical Chemistry A, 103, 1165-1170(1999).

    [10] Link S, Burda C, Nikoobakht B et al. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses[J]. The Journal of Physical Chemistry B, 104, 6152-6163(2000).

    [11] Wang J, Chen Y, Chen X et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Optics Express, 19, 14726(2011).

    [12] Porosoff M D, Yan B H, Chen J G et al. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy & Environmental Science, 9, 62-73(2016).

    [13] Lee J, Mubeen S, Ji X L et al. Plasmonic photoanodes for solar water splitting with visible light[J]. Nano Letters, 12, 5014-5019(2012).

    [14] Mukherjee S, Libisch F, Large N et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au[J]. Nano Letters, 13, 240-247(2013).

    [15] Zhou X M, Liu G, Yu J G et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light[J]. Journal of Materials Chemistry, 22, 21337(2012).

    [16] Wan Y, An Y S, Deng L G et al. Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes[J]. Scientific Reports, 7, 16185(2017).

    [17] Li H, Yu J, Chen Z et al. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [18] Catchpole K R, Polman A. Plasmonic solar cells[J]. Optics Express, 16, 21793-21800(2008).

    [19] Turner J A. A realizable renewable energy future[J]. Science, 285, 687-689(1999).

    [20] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).

    [21] Wan Y, Deng L G. Modulation and enhancement of optical absorption of graphene-loaded plasmonic hybrid nanostructures in visible and near-infrared regions[J]. Journal of Applied Physics, 121, 163102(2017).

    [22] Fang Z Y, Wang Y M, Liu Z et al. Plasmon-induced doping of graphene[J]. ACS Nano, 6, 10222-10228(2012).

    [23] Bachelier G, Mlayah A. Surface plasmon mediated Raman scattering in metal nanoparticles[J]. Physical Review B, 69, 205408(2004).

    [24] Kelly K L, Coronado E, Zhao L L et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 107, 668-677(2003).

    [25] Fontana J, Ratna B R. Highly tunable gold nanorod dimer resonances mediated through conductive junctions[J]. Applied Physics Letters, 105, 011107(2014).

    [26] Shirzaditabar F, Saliminasab M. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell[J]. Physics of Plasmas, 20, 052109(2013).

    [27] Wu D J, Jiang S M, Cheng Y et al. Fano-like resonance in symmetry-broken gold nanotube dimer[J]. Optics Express, 20, 26559-26567(2012).

    [28] Huang C J, Ye J, Wang S et al. Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection[J]. Applied Physics Letters, 100, 173114(2012).

    [29] Ye F, Burns M J, Naughton M J et al. Structured metal thin film as an asymmetric color filter: the forward and reverse plasmonic halos[J]. Scientific Reports, 4, 7267(2014).

    [30] Wiley B J, Im S H, Li Z Y et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. The Journal of Physical Chemistry B, 110, 15666-15675(2006).

    [31] Zou W B, Zhou J, Jin L et al. Properties of localized surface plasmon resonance of gold nanoshell pairs[J]. Acta Physica Sinica, 61, 097805(2012).

    [32] Liang Q Q, Sarvari N T, Yu W X et al. Electron impact investigation of hybridization scheme in coupled split-ring resonators[C], 187-189(2014).

    [33] Li G, Guan W J, Zhang Y J et al. Polarization-controlled optical switch based on surface plasmon[J]. Acta Photonica Sinica, 49, 0326001(2020).

    [34] Sherry L J, Jin R C, Mirkin C A et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms[J]. Nano Letters, 6, 2060-2065(2006).

    [35] Zhou X, Fu Y, Li K et al. Coupling mode-based nanophotonic circuit device[J]. Applied Physics B, 91, 373-376(2008).

    [36] Sherry L J, Chang S H, Schatz G C et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters, 5, 2034-2038(2005).

    [37] Palik E D[M]. Introductory remarks, 3-9(1997).

    [38] Wang J, Yuan B, Fan C et al. A novel planar metamaterial design for electromagnetically induced transparency and slow light[J]. Optics Express, 21, 25159-25166(2013).

    [39] Zhang Z J, Yang J B, He X et al. Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial[J]. RSC Advances, 8, 27746-27753(2018).

    [40] Zou S L, Schatz G C. Response to “comment on ‘silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’[J]. The Journal of Chemical Physics, 122, 097102(2005).

    [41] Carron K T, Lehmann H W, Fluhr W et al. Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering[J]. Journal of the Optical Society of America B, 3, 430-440(1986).

    Song Xiang, Xinyu Zhang, Luogen Deng. Plasmon Mode Coupling Relationship and Optical Properties of Composite Structure[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0924001
    Download Citation