• Journal of Semiconductors
  • Vol. 40, Issue 8, 081502 (2019)
Lin Chen1, Jianhua Zhao2, Dieter Weiss1, Christian H. Back1、3, Fumihiro Matsukura4, and Hideo Ohno4、5
Author Affiliations
  • 1Institute of Experimental and Applied Physics, University of Regensburg, 93049 Regensburg, Germany
  • 2State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Department of Physics, Technical University of Munich, Garching b. Munich, Germany
  • 4Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai 980-0845, Japan
  • 5Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
  • show less
    DOI: 10.1088/1674-4926/40/8/081502 Cite this Article
    Lin Chen, Jianhua Zhao, Dieter Weiss, Christian H. Back, Fumihiro Matsukura, Hideo Ohno. Magnetization dynamics and related phenomena in semiconductors with ferromagnetism[J]. Journal of Semiconductors, 2019, 40(8): 081502 Copy Citation Text show less
    References

    [1] H Ohno, A Shen, F Matsukura et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 69, 363(1996).

    [2] T Dietl, H Ohno, F Matsukura et al. Zener model description in ferromagnetism in zinc-blende magnetic semiconductors. Sience, 287, 1019(2000).

    [3] T Diet, H Ohno, F Matsukura. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 63, 195205(2001).

    [4]

    [5] T Dietl, H Ohno. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 86, 187(2014).

    [6] T Jungwirth, J Wunderlich et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys, 86, 855(2014).

    [7] J Schneider, W Kaufmann et al. Electronic structure of neutral manganese acceptor in gallium arsenide. Phys Rev Lett, 59, 240(1987).

    [8] J Szczytko, J Teardowski, K Świątek et al. Mn impurity in Ga1–xMnxAs epilayers. Phys Rev B, 60, 8304(1999).

    [9] K M Yu, W Walukiewicz, T Wojtowicz et al. Effect of the location of Mn sites in ferromagnetic Ga1–xMnxAs on its Curie temperature. Phys Rev B, 65, 201303(2002).

    [10] J Blinowski, P Kacman. Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs. Phys Rev B, 67, 121204(R)(2003).

    [11] T Wojtowicz, J K Furdyna, X Liu et al. Electronic effects determining the formation of ferromagnetic III1–xMnxV alloys during epitaxial growth. Physica E, 25, 171(2004).

    [12] K W Edmonds, P Bogusławski, K Y Wang et al. Mn interstitial diffusion in (Ga,Mn)As. Phys Rev Lett, 92, 037201(2004).

    [13] S Souma, L Chen, R Oszwałdowski. Fermi level position, Coulomb gap, and Dresselhaus splitting in (Ga,Mn)As. Sci Rep, 6, 27266(2016).

    [14] K F Fid, B L Sheu, O Maksimov et al. Nanoengineered Curie temperature in laterally patterned ferromagnetic semiconductor heterostructures. Appl Phys Lett, 86, 152505(2005).

    [15] L Chen, X Yan, F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [16] A Shen, H Ohno, F Matsukura et al. Epitaxy of (Ga,Mn)As, a new diluted magnetic semiconductor based on GaAs. J Cryst Growth, 175/176, 1069(1997).

    [17] T Jungwirth, Q Niu, A H MacDonald. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett, 88, 207208(2002).

    [18] D V Baxter, D Ruzmetov, J Scherschligt et al. Anisotropic magnetoresistance in Ga1–xMnxAs. Phys Rev B, 65, 212407(2002).

    [19] H X Tang, R K Kawakami, D D Awschalom et al. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys Rev Lett, 90, 107201(2003).

    [20] K Pappert, S Hümpfner, J Wenisch et al. Transport characterization of the magnetic anisotropy of (Ga,Mn)As. Appl Phys Lett, 90, 062109(2007).

    [21] T Yamada, D Chiba, F Matsukura et al. Magnetic anisotropy in (Ga,Mn)As probed by magnetotransport measurements. Phys Status Solidi C, 3, 4086(2006).

    [22] M Abolfath, T Jungwirth, J Brum et al. Theory of magnetic anisotropy in III1–xMnxV ferromagets. J Magn Magn Mater, 320, 1190(2008).

    [23] M Birowska, C Śliwa, J A Majewski et al. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Phys Rev Lett, 108, 237203(2012).

    [24] J Zemen, J Kučera, K Olejník et al. Magnetocrystalline anisotropies in (Ga,Mn)As: Systematic theoretical study and comparison with experiment. Phys Rev B, 80, 155203(2009).

    [25] W Stefanowicz, C Śliwa, P Alekshkevych et al. Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs. Phys Rev B, 81, 155203(2010).

    [26] M Sawicki, O Poselkov, C Sliwa et al. Cubic anisotropy in (Ga,Mn)As layers: Experiment and theory. Phys Rev B, 97, 184403(2018).

    [27] A Oiwa, S Katsumoto, A Endo et al. Nonmetal-metal-nonmetal transition and large negative magnetoresistance in (Ga,Mn)As/GaAs. Solid State Commun, 103, 209(1997).

    [28] T Dietl. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 77, 031005(2008).

    [29] M Sawicki, D Chiba, A Korbecka. Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As. Nat Phys, 6, 22(2009).

    [30] L Chen, F Matsukura. Electric-field modulation of damping constant in a ferromagnetic semiconductor (Ga,Mn)As. Phys Rev Lett, 115, 057204(2015).

    [31] D Chiba, F Matsukura, H Ohno. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl Phys Lett, 89, 162505(2006).

    [32] D Chiba, M Sawicki, Y Nishitani et al. Magnetization vector manipulation by electric fields. Nature, 455, 515(2008).

    [33] D Chiba, M Werpachowska et al. Anomalous Hall effect in field-effect structures of (Ga,Mn)As. Phys Rev Lett, 104, 106601(2010).

    [34] F Matsukura, Y Tokura, H. Ohno. Control of magnetism by electric fields. Nat Nanotechnol, 10, 209(2015).

    [35] X Liu, J K Furdyna. Ferromagnetic resonance in Ga1–xMnxAs dilute magnetic semiconductors. J Phys: Condens Matter, 18, R245(2006).

    [36] T L Gilbert. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn, 40, 3443(2004).

    [37] L Chen, F Matsukura, H Ohno. Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat Commun, 4, 2055(2013).

    [38] H Suhl. Ferromagnetic resonance in nickel ferrite between one and two kilomegacycles. Phys Rev, 97, 555(1955).

    [39] S Mizukami, Y Ando. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM = Cu, Ta, Pd and Pt) films. Jpn J Appl Phys, 40, 580(2001).

    [40] R Arias, D L Mills. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys Rev B, 60, 7395(1999).

    [41] J Lindner, C Barsukov et al. Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Phys Rev B, 80, 224421(2009).

    [42] A Okada, S Kanai, M Yamanouchi et al. Electric-field effects on magnetic anisotropy and damping constant in Ta/CoFeB/MgO investigated by ferromagnetic resonance. Appl Phys Lett, 105, 052415(2014).

    [43] H J Juretschke. Electromagnetic theory of dc effects in ferromagnetic resonance. J Appl Phys, 31, 1401(1960).

    [44] D Fang, H Kurebayashi, J Wunderlich et al. Spin-orbit-driven ferromagnetic resonance. Nat Nanotechnol, 6, 413(2011).

    [45] S Mizukami, Y Ando, T Miyazaki. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/ Cu/Pt films. Phys Rev B, 66, 104413(2002).

    [46] Y Tserkovnyak, A Brataas, G E W Bauer. Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett, 88, 117601(2002).

    [47] E Saitoh, M Ueda et al. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett, 88, 182509(2006).

    [48] L Chen, S Ikeda, F Matsukura et al. DC voltages in Py and Py/Pt under ferromagnetic resonance. Appl Phys Express, 7, 013002(2014).

    [49] H Nakayama, L Chen, H W Chang et al. Inverse spin Hall effect in Pt/(Ga,Mn)As. Appl Phys Lett, 106, 222405(2015).

    [50] S Isogami, M Tsunoda. Enhanced inverse spin-Hall voltage in (001) oriented Fe4N/Pt polycrystalline films without contribution of planar-Hall effect. Jpn J Appl Phys, 55, 043001(2016).

    [51] A Chernyshov, M Overby, X Liu et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys, 5, 656(2009).

    [52] M Endo, F Matsukura, H Ohno. Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As. Appl Phys Lett, 97, 222501(2010).

    [53] J Moser, A Matos-Abiague, D Schuh et al. Tunneling anisotropic magnetoresistance and spin-orbit coupling in Fe/GaAs/Au tunnel junctions. Phys Rev Lett, 99, 056601(2007).

    [54] M Gmitra, A Matos-Abiague, C Draxl et al. Magnetic control of spin-orbit fields: A first-principles study of Fe/GaAs junctions. Phys Rev Lett, 111, 036603(2013).

    [55] I Žutić, J Fabian, Sarma S Das. Spintronics: Fundamentals and applications. Rev Mod Phys, 76, 323(2004).

    [56] H J Zhu, M Ramsteiner, H Kostial et al. Room-temperature spin injection from Fe into GaAs. Phys Rev Lett, 87, 016601(2001).

    [57] X Lou, C Adelmann, S A Crooker et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys, 3, 197(2007).

    [58] L Chen, M Decker, M Kronseder et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs(001) interface at room temperature. Nat Commun, 7, 13802(2016).

    [59] J Fabian, A Matos-Abiague, C Ertler et al. Semiconductor spintronics. Acta Physics Slovaca, 57, 565(2007).

    [60] J C R Sánchez, L Vila, G Desfonds et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat Commun, 4, 2944(2013).

    [61] E Lesne, Y Fu, S Oyarzun et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater, 15, 1261(2016).

    [62] L Chen, M Gmitra, M Vogel et al. Electric-field control of interfacial spin-orbit fields. Nat Elect, 1, 350(2018).

    [63] H Liu, W L Lim. Control of current-induced spin-orbit effects in a ferromagnetic heterostructure by electric field. Phys Rev B, 89, 220409(R)(2014).

    [64] T Hupfauer, A Matos-Abiague, M Gmitra et al. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide. Nat Commun, 6, 7374(2015).

    [65] M Buchner, P Högl, S Putz et al. Anisotropic polar magneto-optic Kerr effect of ultrathin Fe/GaAs (001) layers due to interfacial spin-orbit interaction. Phys Rev Lett, 117, 157202(2016).

    [66] L Chen, S Mankovsky, S Wimmer et al. Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001). Nat Phys, 14, 490(2018).

    Lin Chen, Jianhua Zhao, Dieter Weiss, Christian H. Back, Fumihiro Matsukura, Hideo Ohno. Magnetization dynamics and related phenomena in semiconductors with ferromagnetism[J]. Journal of Semiconductors, 2019, 40(8): 081502
    Download Citation