• Infrared and Laser Engineering
  • Vol. 50, Issue 5, 20210147 (2021)
Juan Li1、2, Hao Yu1、2, Tiancheng Yu1、2, Yudan Gou1、2, Huomu Yang1, and Jun Wang1、2
Author Affiliations
  • 1College of Electronic Information, Sichuan University, Chengdu 610065, China
  • 2Suzhou Everbright Photonics Co., Ltd., Suzhou 215163, China
  • show less
    DOI: 10.3788/IRLA20210147 Cite this Article
    Juan Li, Hao Yu, Tiancheng Yu, Yudan Gou, Huomu Yang, Jun Wang. Design of high efficiency diode laser module for wireless power transmission[J]. Infrared and Laser Engineering, 2021, 50(5): 20210147 Copy Citation Text show less
    References

    [1] C M Zhao, Y S Wang, L Guo, et al. Development of laser wireless power transmission technology. Laser Technology, 44, 538-545(2020).

    [2] K Jin, W Zhou. Wirelesslaser power transmission: a review of recent progress. IEEE Transactions on Power Electronics, 34, 3842-3859(2018).

    [3] K J Liu, X K Miao, C Y. Xu et al. Semi-active laser-guided energy transmission and simulation technology. Chinese Optics, 12, 256-264(2019).

    [4] L J Wang, H Y Peng, J Zhang. Advance on high power diode laser coupling. Chinese Optics, 8, 517-534(2015).

    [5] X C Lin, H B Zhu, B Wang, et al. Development of 5 kW diode laser hardening source with homogenized intensity distribution. Optics and Precision Engineering, 25, 1178-1184(2017).

    [6] M Kanskar, S Keeney, R Martinsen. The power of brilliance-the past and future of high-power semiconductor lasers. Laser Focus World, 54, 69-74(2018).

    [7] P Sprangle, B Hafizi, A Ting, et al. High-power lasers for directed-energy applications. Applied Optics, 54, F201(2015).

    [8] Z N Wu, J R Xie, Y N Yang. Effect of light intensity uniformity on the photoelectric conversion efficiency of GaAs cells. Infrared and Laser Engineering, 46, 0606001(2017).

    [9] X X Meng, J S Shen, D L Shi, et al. Secondary concentration of laser wireless power transmission receiving system. Infrared and Laser Engineering, 46, 0705001(2017).

    [10] Y Q Liu, Y H Chao, J Li, et al. 5 kW fiber coupling diode laser for laser processing. Optics and Precision Engineering, 23, 1279-1287(2015).

    [11] Ramireziniguez R, Idrus S M, Sun Z, et al. Optical Wireless Communications: IR f Wireless Connectivity[M]. Boca Raton,FL: CRC Press, 2007.

    [12] I Kansal, R Pachauri. Mathematical puzzle based PV array configuration for GMP enhancement under non-uniform irradiation. EAI Endorsed Transactions on Energy Web, 8, 165915(2020).

    [13] Bao L, Bai J, Price K, et al. Reliability of high powerbrightness diode lasers emitting from 790 to 980 nm[C]Proceedings of SPIE, 2013, 8605: 2005443.

    [14] J Wang. Smith B. High-efficiency diode lasers at high output power. Applied Physics Letters, 74, 1525-1527(1999).

    [15] Y Q Liu, Z C Sheng, Y Lu, et al. Design and performance research of uniform concentrating Fresnel lens. Optoelectronic Technology, 32, 263-266, 272(2012).

    CLP Journals

    [1] Qingdong Yang, Huomu Yang, Jun Wang, Yudan Gou, Sha Wang, Shouhuan Zhou. MPPT integrated simulation system for laser wireless power transmission[J]. Infrared and Laser Engineering, 2022, 51(5): 20210522

    [2] Zhiyu Sun, Jian Lu, Hongchao Zhang, Guangji Li, Zhijian Xie. Performance test of solar cell under laser energy transmission and signal transmission[J]. Infrared and Laser Engineering, 2022, 51(2): 20210888

    Juan Li, Hao Yu, Tiancheng Yu, Yudan Gou, Huomu Yang, Jun Wang. Design of high efficiency diode laser module for wireless power transmission[J]. Infrared and Laser Engineering, 2021, 50(5): 20210147
    Download Citation