• Journal of Infrared and Millimeter Waves
  • Vol. 42, Issue 1, 72 (2023)
Zhen-Qing ZHANG1、2, Li-Juan DONG2、*, Fu-Sheng DENG2, Yun-Hui LI3、**, Jing-Ping XU3, Yong SUN3, and Hong CHEN3
Author Affiliations
  • 1Department of Criminal Science and technology Railway Police College,Zhengzhou 450053,China
  • 2Shanxi Provincial Key Laboratory of Electromagnetic Functional Materials for Microstructure,Shanxi Datong University,Datong 037009,China
  • 3School of Physics Science and Engineering,Tongji University,Shanghai 200092,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2023.01.010 Cite this Article
    Zhen-Qing ZHANG, Li-Juan DONG, Fu-Sheng DENG, Yun-Hui LI, Jing-Ping XU, Yong SUN, Hong CHEN. High-efficiency nano laser based on multipath positive feedback mechanism of matching zero-index metamaterials[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 72 Copy Citation Text show less
    References

    [1] B. A Jorge, J Francisco. G. Plasmonic lasers: A sense of direction. Nat Nanotechnol, 8, 479-480(2013).

    [2] S Noda, M Yokoyama, M Imada et al. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science, 293, 1123-1125(2001).

    [3] Can HUANG, Chen ZHANG, Shu-Min XIAO et al. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [4] J Pendry. B. Negative Refraction makes a Perfect Lens. Phys. Rev. Lett, 85, 3966-3969(2000).

    [5] E Cubukcu, K Aydin, E Ozbay et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature, 423, 604-605(2003).

    [6] P. V Parimi, W.T Lu, P Vodo et al. Photonic crystals: Imaging by flat lens using negative refraction. Nature, 426, 404(2003).

    [7] E Cubukcu, K Aydin, E Ozbay et al. Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens. Phys. Rev. Lett, 91, 207401(2003).

    [8] C.Y Luo, S.G Johnson, J Joannopoulos et al. Subwavelength imaging in photonic crystals. Phys. Rev. B, 68, 045115(2003).

    [9] Zhi-Yuan LI, Lan-Lan LIN. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Phys. Rev. B, 68, 245110(2003).

    [10] A Silveirinha, M Salandrino, A Engheta. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B, 75, 155410(2007).

    [11] M Silveirinha, N Engheta. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett, 97, 157403(2006).

    [12] S Enoch, G Tayeb, P Sabouroux et al. A metamaterial for directive emission. Phys. Rev. Lett, 89, 213902(2002).

    [13] R Ziolkowski. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E, 70, 046608(2004).

    [14] Qiang CHENG, Wei-Xiang JIANG, Tie-Jun CUI. Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys. Rev. Lett, 108, 213903(2012).

    [15] R W Ziolkowski. Ultrathin, metamaterial-based laser cavities. J Opt Soc Am B, 23, 451-460(2006).

    [16] Xue-Qin HUANG, Yun LAI, Zhi-Hong HANG et al. Dirac cones induced by accidental degeneracy inphotonic crystals and zero-refractive-index materials. Nat. Mater, 10, 582-586(2011).

    [17] Jun MEI, Ying WU, C. T Chan et al. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B, 86, 035141(2012).

    [18] Yan LI, Ying WU, Xi CHEN et al. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. Opt. Express, 21, 7699-7711(2013).

    [19] J. B Pendry, D Schurig, D Smith. R. Controlling Electromagnetic Fields. Science, 312, 1780-1782(2006).

    [20] P Moitra, Yuan-Mu YANG, Z Anderson et al. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics, 7, 791-795(2013).

    [21] Yu PENG, Shao-Lin LIAO. ZIM Laser: Zero-Index-Materials Laser. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 4, 133-142(2019).

    [22] B A Tennant, R Ara, A Atwiri et al. Distributed feedback lasing based on a negative-index metamaterial waveguide. Optics Letters, 44, 4586-4589(2019).

    [23] Ge SONG, Jing-Ping XU, Ya-Ping YANG. Quantum interference between Zeeman levels near structures made of left-handed materials and matched zero-index metamaterials. Phys. Rev. A, 89, 053830(2014).

    [24] M Tomaš. S. Green function for multilayers: Light scattering in planar cavities. Phys. Rev. A, 51, 2545(1995).

    [25] S Wojciech, G Boris, P Raphaël et al. Antireflection gratings for a photonic-crystal flat lens. Opt. Lett, 34, 3532-3534(2009).

    [26] Xue-Qin HUANG, Yun LAI, Zhi-Hong HANG et al. Dirac cones induced by accidental degeneracy inphotonic crystals and zero-refractive-index materials. Nat Mater, 10, 582-586(2011).

    [27] S.H Chang, A Taflove. Finite-difference time-domain model of lasing action in a four-level two-electron atomic system. Opt Express, 12, 3827-3833(2004).

    [28] A Taflove. Computational Electromagnetics: The Finite-Difference Time-Domain Method. Boston: Artech House(2005).

    [29] B Ellis, M. A Mayer, G Shambat et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photon, 5, 297-300(2011).

    Zhen-Qing ZHANG, Li-Juan DONG, Fu-Sheng DENG, Yun-Hui LI, Jing-Ping XU, Yong SUN, Hong CHEN. High-efficiency nano laser based on multipath positive feedback mechanism of matching zero-index metamaterials[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 72
    Download Citation