• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617003 (2022)
Fan Wu1, Shangyu Li2, Weili Hong1、***, Shuhua Yue1、**, and Pu Wang1、*
Author Affiliations
  • 1Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing , 100191, China
  • 2Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing , 100871, China
  • show less
    DOI: 10.3788/LOP202259.0617003 Cite this Article Set citation alerts
    Fan Wu, Shangyu Li, Weili Hong, Shuhua Yue, Pu Wang. Hyperspectral Coherent Raman Scattering and Its Applications[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617003 Copy Citation Text show less
    References

    [1] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [2] Zhang C, Aldana-Mendoza J A. Coherent Raman scattering microscopy for chemical imaging of biological systems[J]. Journal of Physics: Photonics, 3, 032002(2021).

    [3] Min W, Freudiger C W, Lu S J et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy[J]. Annual Review of Physical Chemistry, 62, 507-530(2011).

    [4] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [5] Zhang C, Zhang D L, Cheng J X. Coherent Raman scattering microscopy in biology and medicine[J]. Annual Review of Biomedical Engineering, 17, 415-445(2015).

    [6] Polli D, Kumar V, Valensise C M et al. Broadband coherent Raman scattering microscopy[J]. Laser & Photonics Reviews, 12, 1800020(2018).

    [7] Cheng J X, Xie X S[M]. Coherent Raman scattering microscopy(2016).

    [8] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).

    [9] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999).

    [10] Hashimoto M, Araki T, Kawata S. Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration[J]. Optics Letters, 25, 1768-1770(2000).

    [11] Ploetz E, Laimgruber S, Berner S et al. Femtosecond stimulated Raman microscopy[J]. Applied Physics B, 87, 389-393(2007).

    [12] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [13] Nandakumar P, Kovalev A, Volkmer A. Vibrational imaging based on stimulated Raman scattering microscopy[J]. New Journal of Physics, 11, 033026(2009).

    [14] Camp C H,, Cicerone M T. Chemically sensitive bioimaging with coherent Raman scattering[J]. Nature Photonics, 9, 295-305(2015).

    [15] Terhune R W, Maker P D, Savage C M. Measurements of nonlinear light scattering[J]. Physical Review Letters, 14, 681-684(1965).

    [16] Cheng J X, Xie X S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine[J]. Science, 350, aaa8870(2015).

    [17] Evans C L, Xie X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine[J]. Annual Review of Analytical Chemistry, 1, 883-909(2008).

    [18] Liao C S, Cheng J X. In situ and in vivo molecular analysis by coherent Raman scattering microscopy[J]. Annual Review of Analytical Chemistry, 9, 69-93(2016).

    [19] Woodbury E, Ng W. Ruby laser operation in near IR[J]. Proceedings of the Institute of Radio Engineers, 50, 2367(1962).

    [20] Zhang C, Cheng J X. Perspective: Coherent Raman scattering microscopy, the future is bright[J]. APL Photonics, 3, 090901(2018).

    [21] Evans C L, Potma E O, Puoris’haag M et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 16807-16812(2005).

    [22] Kienle F, Teh P S, Lin D J et al. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator[J]. Optics Express, 20, 7008-7014(2012).

    [23] Lin C Y, Potma E O, Suhalim J L et al. Picosecond spectral coherent anti-Stokes Raman scattering imaging with principal component analysis of meibomian glands[J]. Journal of Biomedical Optics, 16, 021104(2011).

    [24] Suhalim J L, Chung C Y, Lilledahl M B et al. Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy[J]. Biophysical Journal, 102, 1988-1995(2012).

    [25] Garbacik E T, Herek J L, Otto C et al. Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging[J]. Journal of Raman Spectroscopy, 43, 651-655(2012).

    [26] Zhang D L, Wang P, Slipchenko M N et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis[J]. Analytical Chemistry, 85, 98-106(2013).

    [27] Bégin S, Burgoyne B, Mercier V et al. Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system[J]. Biomedical Optics Express, 2, 1296-1306(2011).

    [28] Li S P, Chan T. Electrical wavelength-tunable actively mode-locked fiber ring laser with a linearly chirped fiber Bragg grating[J]. IEEE Photonics Technology Letters, 10, 799-801(1998).

    [29] DePaoli D T, Lapointe N, Messaddeq Y et al. Intact primate brain tissue identification using a completely fibered coherent Raman spectroscopy system[J]. Neurophotonics, 5, 035005(2018).

    [30] Karpf S, Eibl M, Wieser W et al. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy[J]. Nature Communications, 6, 6784(2015).

    [31] Pence I J, Kuzma B A, Brinkmann M et al. Multi-window sparse spectral sampling stimulated Raman scattering microscopy[J]. Biomedical Optics Express, 12, 6095-6114(2021).

    [32] Huang B, Yan S, Xiao L et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated Raman scattering[J]. Small, 14, 1703246(2018).

    [33] Yan S, Cui S S, Ke K et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 90, 6362-6366(2018).

    [34] Ozeki Y, Umemura W, Otsuka Y et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering[J]. Nature Photonics, 6, 845-851(2012).

    [35] Ozeki Y, Umemura W, Sumimura K et al. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses[J]. Optics Letters, 37, 431-433(2012).

    [36] Laptenok S P, Rajamanickam V P, Genchi L C et al. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope[J]. Journal of Biophotonics, 12, e201900028(2019).

    [37] Hellerer T, Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Applied Physics Letters, 85, 25-27(2004).

    [38] Mohseni M, Polzer C, Hellerer T. Resolution of spectral focusing in coherent Raman imaging[J]. Optics Express, 26, 10230-10241(2018).

    [39] Rocha-Mendoza I, Langbein W, Borri P. Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion[J]. Applied Physics Letters, 93, 201103(2008).

    [40] Rocha-Mendoza I, Langbein W, Watson P et al. Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses[J]. Optics Letters, 34, 2258-2260(2009).

    [41] Langbein W, Rocha-Mendoza I, Borri P. Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing[J]. Applied Physics Letters, 95, 081109(2009).

    [42] Fu D, Holtom G, Freudiger C et al. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers[J]. The Journal of Physical Chemistry B, 117, 4634-4640(2013).

    [43] Masia F, Glen A, Stephens P et al. Quantitative chemical imaging and unsupervised analysis using hyperspectral coherent anti-Stokes Raman scattering microscopy[J]. Analytical Chemistry, 85, 10820-10828(2013).

    [44] Porquez J G, Cole R A, Tabarangao J T et al. Spectrally-broad coherent anti-Stokes Raman scattering hyper-microscopy utilizing a Stokes supercontinuum pumped at 800 nm[J]. Biomedical Optics Express, 7, 4335-4345(2016).

    [45] Chen K, Wu T, Zhou T et al. Cascaded dual-soliton pulse stokes for broadband coherent anti-Stokes Raman spectroscopy[J]. IEEE Photonics Journal, 8, 1602308(2016).

    [46] Figueroa B, Fu W, Nguyen T et al. Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source[J]. Biomedical Optics Express, 9, 6116-6131(2018).

    [47] Liao C S, Huang K C, Hong W L et al. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning[J]. Optica, 3, 1377-1380(2016).

    [48] Liao C S, Wang P, Huang C Y et al. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope[J]. ACS Photonics, 5, 947-954(2018).

    [49] He R Y, Liu Z P, Xu Y K et al. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line[J]. Optics Letters, 42, 659-662(2017).

    [50] Lin H N, Liao C S, Wang P et al. Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion[J]. Light: Science & Applications, 7, 17179(2018).

    [51] Lin H N, Lee H J, Tague N et al. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning[J]. Nature Communications, 12, 3052(2021).

    [52] Lanin A A, Stepanov E A, Tikhonov R A et al. A compact laser platform for nonlinear Raman microspectroscopy: multimodality through broad chirp tunability[J]. Journal of Raman Spectroscopy, 47, 1042-1048(2016).

    [53] Lanin A A, Stepanov E A, Tikhonov R A et al. Multimodal nonlinear Raman microspectroscopy with ultrashort chirped laser pulses[J]. JETP Letters, 101, 593-597(2015).

    [54] Audier X, Forget N, Rigneault H. High-speed chemical imaging of dynamic and histological samples with stimulated Raman micro-spectroscopy[J]. Optics Express, 28, 15505-15514(2020).

    [55] Alshaykh M S, Liao C S, Sandoval O E et al. High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines[J]. Optics Letters, 42, 1548-1551(2017).

    [56] Fu D, Yu Y, Folick A et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy[J]. Journal of the American Chemical Society, 136, 8820-8828(2014).

    [57] Müller M, Schins J M. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy[J]. The Journal of Physical Chemistry B, 106, 3715-3723(2002).

    [58] Cheng J X, Volkmer A, Book L D et al. Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles[J]. The Journal of Physical Chemistry B, 106, 8493-8498(2002).

    [59] Kee T W, Cicerone M T. Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 29, 2701-2703(2004).

    [60] Kano H, Hamaguchi H O. Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber[J]. Applied Physics Letters, 86, 121113(2005).

    [61] Kano H, Hamaguchi H O. Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy[J]. Optics Express, 13, 1322-1327(2005).

    [62] von Vacano B, Meyer L, Motzkus M. Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy[J]. Journal of Raman Spectroscopy, 38, 916-926(2007).

    [63] Pohling C, Buckup T, Pagenstecher A et al. Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy[J]. Biomedical Optics Express, 2, 2110-2116(2011).

    [64] Pohling C, Buckup T, Motzkus M. Hyperspectral data processing for chemoselective multiplex coherent anti-Stokes Raman scattering microscopy of unknown samples[J]. Journal of Biomedical Optics, 16, 021105(2011).

    [65] Rock W, Bonn M, Parekh S H. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array[J]. Optics Express, 21, 15113-15120(2013).

    [66] Lu F K, Ji M B, Fu D et al. Multicolor stimulated Raman scattering (SRS) microscopy[J]. Molecular Physics, 110, 1927-1932(2012).

    [67] Seto K, Okuda Y, Tokunaga E et al. Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection[J]. The Review of Scientific Instruments, 84, 083705(2013).

    [68] Seto K, Okuda Y, Tokunaga E et al. Multiplex stimulated Raman imaging with white probe-light from a photonic-crystal fibre and with multi-wavelength balanced detection[J]. Journal of Physics D: Applied Physics, 47, 345401(2014).

    [69] Liao C S, Slipchenko M N, Wang P et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy[J]. Light: Science & Applications, 4, e265(2015).

    [70] Zhang C, Huang K C, Rajwa B et al. Stimulated Raman scattering flow cytometry for label-free single-particle analysis[J]. Optica, 4, 103-109(2017).

    [71] Saltarelli F, Kumar V, Viola D et al. Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher[J]. Optics Express, 24, 21264-21275(2016).

    [72] Dobner S, Fallnich C. Dispersive Fourier transformation femtosecond stimulated Raman scattering[J]. Applied Physics B, 122, 278(2016).

    [73] Huang N Y, Short M, Zhao J H et al. Full range characterization of the Raman spectra of organs in a murine model[J]. Optics Express, 19, 22892-22909(2011).

    [74] Freudiger C W, Min W, Holtom G R et al. Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy[J]. Nature Photonics, 5, 103-109(2011).

    [75] Wang P, Li J, Wang P et al. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy[J]. Angewandte Chemie (International Ed. in English), 52, 13042-13046(2013).

    [76] Fu D, Xie X S. Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data[J]. Analytical Chemistry, 86, 4115-4119(2014).

    [77] Nahmad-Rohen A, Regan D, Masia F et al. Quantitative label-free imaging of lipid domains in single bilayers by hyperspectral coherent Raman scattering[J]. Analytical Chemistry, 92, 14657-14666(2020).

    [78] Adams W R, Gautam R, Locke A K et al. Visualizing the role of lipid dynamics during infrared neural stimulation with hyperspectral stimulated Raman scattering microscopy[J/OL]. bioRxiv, 444984(2021). https://doi.org/10.1101/2021.05.24.444984

    [79] Huang K C, Li J J, Zhang C et al. SRS image cytometry for high-content single cell analysis[J]. Proceedings of SPIE, 10882, 108822E(2019).

    [80] Young R M, Ackerman D, Quinn Z L et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress[J]. Genes & Development, 27, 1115-1131(2013).

    [81] Li J J, Condello S, Thomes-Pepin J et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells[J]. Cell Stem Cell, 20, 303-314(2017).

    [82] Yang Y F, Yang Y L, Liu Z J et al. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering[J]. Analytical Chemistry, 93, 6223-6231(2021).

    [83] Bae K, Zheng W, Lin K et al. Epi-detected hyperspectral stimulated Raman scattering microscopy for label-free molecular subtyping of glioblastomas[J]. Analytical Chemistry, 90, 10249-10255(2018).

    [84] Bae K, Xin L, Zheng W et al. Mapping the intratumoral heterogeneity in glioblastomas with hyperspectral stimulated Raman scattering microscopy[J]. Analytical Chemistry, 93, 2377-2384(2021).

    [85] Chen X, Cui S S, Yan S et al. Hyperspectral stimulated Raman scattering microscopy facilitates differentiation of low-grade and high-grade human prostate cancer[J]. Journal of Physics D: Applied Physics, 54, 484001(2021).

    [86] Tipping W J, Lee M, Serrels A et al. Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy[J]. Chemical Science, 8, 5606-5615(2017).

    [87] Fu D, Zhou J, Zhu W S et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering[J]. Nature Chemistry, 6, 614-622(2014).

    [88] Bae K, Zheng W, Ma Y et al. Real-time monitoring of pharmacokinetics of antibiotics in biofilms with Raman-tagged hyperspectral stimulated Raman scattering microscopy[J]. Theranostics, 9, 1348-1357(2019).

    [89] Iino T, Hashimoto K, Asai T et al. Multicolour chemical imaging of plant tissues with hyperspectral stimulated Raman scattering microscopy[J]. The Analyst, 146, 1234-1238(2021).

    [90] Pezacki J P, Blake J A, Danielson D C et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy[J]. Nature Chemical Biology, 7, 137-145(2011).

    [91] Yue S H, Cheng J X. Deciphering single cell metabolism by coherent Raman scattering microscopy[J]. Current Opinion in Chemical Biology, 33, 46-57(2016).

    [92] Zhao Z L, Shen Y H, Hu F H et al. Applications of vibrational tags in biological imaging by Raman microscopy[J]. The Analyst, 142, 4018-4029(2017).

    [93] Lee H J, Cheng J X. Imaging chemistry inside living cells by stimulated Raman scattering microscopy[J]. Methods, 128, 119-128(2017).

    [94] Hu F H, Shi L X, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy[J]. Nature Methods, 16, 830-842(2019).

    [95] Hill A H, Fu D. Cellular imaging using stimulated Raman scattering microscopy[J]. Analytical Chemistry, 91, 9333-9342(2019).

    [96] Shen Y H, Hu F H, Min W. Raman imaging of small biomolecules[J]. Annual Review of Biophysics, 48, 347-369(2019).

    [97] Fung A A, Shi L Y. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy[J]. WIREs Systems Biology and Medicine, 12, e1501(2020).

    Fan Wu, Shangyu Li, Weili Hong, Shuhua Yue, Pu Wang. Hyperspectral Coherent Raman Scattering and Its Applications[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617003
    Download Citation