• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201072 (2020)
Jie Chen1 and Shengming Zhou2
Author Affiliations
  • 1Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/IRLA20201072 Cite this Article
    Jie Chen, Shengming Zhou. Review of magneto-optic materials for high power laser isolators (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201072 Copy Citation Text show less
    References

    [2] 李晋闽, Jinming Li. Research and application of high-power all solid-state laser. Infrared and Laser Engineering, 36, 269-271(2007).

    [3] Yong Long, 龙勇, 石自彬, Zibing Shi, Yuchong Ding, 丁雨憧. Growth and characterization of large-size Terbium Gallium Garnet single crystal. Piezoelectrics & Acoustooptics, 38, 433-436(2016).

    [4] Shiqing Xu, 徐时清, Zhongming Yang, 杨中民, 戴世勋, Shixun Dai. Recent progress in research of Tb3+ -doped faraday magneto optical glasses. Journal of the Chinese Ceramic Society, 4, 376-381(2003).

    [5] 蒋亚丝, Yasi Jiang, Beiming Zhou, 周蓓明, Biao Wang, 王标. High performance large aperture paramagnetic faraday rotatory glass. Acta Optica Sinica, 29, 3157(2009).

    [6] R Yasuhara, S Tokita, J Kawanaka. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Optics Express, 15, 11255-11261(2007).

    [7] R Yasuhara, H Furuse. Thermally induced depolarization in TGG ceramics. Optics Letters, 38, 1751(2013).

    [8] H Lin, S Zhou, H Teng. Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Optical Materials, 33, 1833-1836(2011).

    [9] S S Balabanov, D A Permin, E Y Rostokina. Characterizations of REE: Tb2O3magneto-optical ceramics. Physica Status Solidi (b), 257, 1900474(2019).

    [10] A Starobor, R Yasyhara, I Snetkov. TSAG-based cryogenic Faraday isolator. Optical Materials, 47, 112-117(2015).

    [12] M Geho, T Sekijima, T Fujii. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine. Journal of Crystal Growth, 267, 188-193(2004).

    [13] I L Snetkov, A V Voitovich, O V Palashov. Review of Faraday isolators for kilowatt average power lasers. IEEE Journal of Quantum Electronics, 50, 434-443(2014).

    [14] Y L Aung, A Ikesue. Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material. Journal of the American Ceramic Society, 100, 4081-4087(2017).

    [15] C B Rubinstein, L G V Uitert, W H Grodkiewicz. Magneto-optical properties of rare earth (3) aluminum garnets. Journal of Applied Physics, 35, 3069(1964).

    [16] C Chen, S Zhou, H Lin. Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R=Y, Ce) transparent ceramics. Applied Physics Letters, 101, 131908(2012).

    [17] D Hao, X Shao, Y Tang. Effect of Si 4+ doping on the microstructure and magneto-optical properties of TAG transparent ceramics. Optical Materials, 77, 253-257(2018).

    [18] J Chen, H Lin, D Hao. Exaggerated grain growth caused by ZrO2-doping and its effect on the optical properties of Tb3Al5O12 ceramics. Scripta Materialia, 162, 82-85(2019).

    [19] Chong Chen, Yi Ni, Shengming Zhou. Preparation of (Tb0.8Y0.2)3Al5O12 transparent ceramic as novel magneto-optical isolator material. Chinese Optics Letters, 11, 021601-021603(2013).

    [20] C Chen, X Yi, S Zhang. Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering aids. Ceramics International, 41, 12823-12827(2015).

    [21] D Zheleznov, A Starobor, O Palashov. High-power Faraday isolators based on TAG ceramics. Optics Express, 22, 2578-2583(2014).

    [23] N Myoung, D V Martyshkin, V V Fedorov. Mid-IR lasing of iron-cobalt co-doped ZnS(Se) crystals via Co-Fe energy transfer. Journal of Luminescence, 133, 257-261(2013).

    [24] S Mirov, V Fedorov, I Moskalev. Progress in Cr2+ and Fe2+ doped mid-IR laser materials. Laser & Photonics Reviews, 4, 21-41(2010).

    [25] U Hömmerich, X Wu, V R Davis. Demonstration of room-temperature laser action at 2.5 m from Cr2+: Cd0.85Mn0.15Te. Optics Letters, 22, 1180-1182(1997).

    [26] G D Boyd, E Buehler, F G Storz. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Applied Physics Letters, 18, 301(1971).

    [27] Y Q Lu, Z L Wan, Q Wang. Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Applied Physics Letters, 77, 3719-3721(2000).

    [28] J H Liao, D M Marking, K F Hsu. alpha- and beta-A(2)Hg(3)M(2)S(8) (A=K, Rb; M=Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response. Journal of the American Chemical Society, 125, 9484-9493(2003).

    [29] A P Vandevender, P G Kwiat. High efficiency single photon detection via frequency up-conversion. Journal of Modern Optics, 51, 1433-1445(2004).

    [30] E A Khazanov. Compensation of thermally induced polarisation distortions in Faraday isolators. Quantum Electronics, 29, 59-64(1999).

    [31] R Yasuhara, I Snetkov. Faraday rotator based on TSAG crystal with<001> orientation. Optics Express, 24, 15486(2016).

    [32] E Khazanov. Faraday isolators for high average power laserssize. Advances in Solid State Lasers Development and Applications, 3, 45-72(2010).

    [33] I L Snetkov, R Yasuhara, A V Starobor. Thermo-optical and magneto-optical characteristics of Terbium Scandium Aluminum Garnet Crystals. IEEE Journal of Quantum Electronics, 51 (7), 1-7(2015).

    [34] W Jin, J Ding, L Guo. Growth and performance research of Tb3Ga5O12 magneto-optical crystal. Journal of Crystal Growth, 484, 17-20(2018).

    [35] I Kuznetsov, I Mukhin, D Silin. Thermal conductivity measurements using phase-shifting interferometry. Optical Materials Express, 4 (10), 2204(2014).

    [36] A Ikesue, Y L Aung, S Makikawa. Polycrystalline (Tb X Y1−X)2O3 Faraday rotator. Optics Letters, 42, 4399-4401(2017).

    [37] O Slezak, R Yasuhara, A Lucianetti. Wavelength dependence of magneto-optic properties of terbium gallium garnet ceramics. Optics Express, 23, 13641(2015).

    [38] R Yasuhara, I Snetkov, A Starobor. Terbium gallium garnet ceramic Faraday rotator for high-power laser application. Optics Letters, 39, 1145(2014).

    [39] D Zheleznov, A Starobor, O Palashov. Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping. Optics Letters, 39, 2183-2186(2014).

    [40] D Zheleznov, A Starobor, O Palashov. Study of the properties and prospects of Ce: TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average. Optical Materials Express, 4, 2127(2014).

    [41] R Q Dou, H T Zhang, A L Zhang. Growth and properties of TSAG and TSLAG magneto-optical crystals with large size. Optical Materials, 96, 109272(2019).

    [42] R Yasuhara, I Snetkov, A Starobor. Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power. Applied Physics Letters, 105, 241104(2014).

    [43] H Sato, V I Chani, A Yoshikawa. Micro-pulling-down growth and characterization of Tb3-xTmxAl5O12 fiber crystals for Faraday rotator applications. Journal of Crystal Growth, 264, 253-259(2004).

    [44] M Geho, T Sekijima, T Fujii. Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by laser FZ method. Journal of Crystal Growth, 275, e663-e667(2005).

    [46] A Starobor, O Palashov, S Zhou. Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium. Optics Letters, 41, 1510-1513(2016).

    [47] A I Yakovlev, I L Snetkov, O V Palashov. Magneto-optical and thermo-optical properties of Ce, Pr, and Ho doped TAG ceramics. IEEE Journal of Quantum Electronics, 55, 1-8(2019).

    [48] I L Snetkov, D A Permin, S S Balabanov. Wavelength dependence of Verdet constant of Tb3+: Y2O3 ceramics. Applied Physics Letters, 108, 3(2016).

    [49] P Veber, M Velazquez, G Gadret. Flux growth at 1230 degrees of cubic Tb2O3 single crystals and characterization of their optical and magnetic properties. Crystengcomm, 17, 492-497(2015).

    [50] I L Snetkov, O V Palashov. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics. Optical Materials, 62, 697-700(2016).

    [51] D Hao, J Chen, G Ao. Fabrication and performance investigation of Thulium-doped TAG transparent ceramics with high magneto-optical properties. Optical Materials, 94, 311-315(2019).

    [52] Q Liu, X Li, J Dai. Fabrication and characterizations of (Tb1−xPrx)3Al5O12 magneto-optical ceramics for Faraday isolators. Optical Materials, 84, 330-334(2018).

    [53] J Dai, Y Pan, T Xie. A novel (Tb0.995Ho0.005)3Al5O12 magneto-optical ceramic with high transparency and Verdet constant. Scripta Materialia, 150, 160-163(2018).

    [54] H Furuse, R Yasuhara, K Hiraga. High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics. Optical Materials Express, 6, 191-196(2016).

    [55] J Chen, Y Tang, C Chen. Roles of zirconia-doping in the sintering process of high quality Tb3Al5O12 magneto-optic ceramics. Scripta Materialia, 176, 83-87(2020).

    [56] A L Glebov, P O Leisher, G Stevens. Optical isolators for 2-micron fibre lasers. Proc of SPIE, 9346, 93460O(2015).

    [57] M Gomi, K Satoh, H Furuyama. Sputter deposition of Ce-substituted iron garnet films with giant magneto-optical effect. IEEE Translation Journal on Magnetics in Japan, 13, 294-299(1990).

    [58] L Hilico, A Douillet, J P Karr. Note: A high transmission Faraday optical isolator in the 9.2 μm range. Review of Scientific Instruments, 82, 096106(2011).

    [59] J H Dennis. A 10.6-micron four-port circulator using free carrier rotation in InSb. IEEE Journal of Quantum Electronics, 3, 416-416(1967).

    [60] S D Jacobs, K J Teegarden, R K Ahrenkiel. Faraday Rotation Optical Isolator for 10.6-microm Radiation. Applied Optics(1974).

    [61] L R Tomasetta, W E Bicknell, D H Bates. 100 W average power 10.6 μm isolator based on the interband Faraday effect in InSb. Quantum Electronics IEEE Journal of, 15, 266-269(1979).

    [62] 陈辰嘉, Chenjia Chen, 马可军, Kejun Ma. Giant Faraday rotation effect of Cd1−xMnxTe. Acta Scientiarum Naturalium, Universitatis Pekinensis, 28, 101-106(1992).

    [63] 刘普霖, Pulin Liu. Progress in magneto-optical theory and infrared magneto-optical spectroscopy of Semiconductors. Chinese Journal of Quantum Electronics, 14, 97-110(1997).

    [64] C B Carlisle, D E Cooper. An optical isolator for mid-infrared diode lasers. Optics Communications, 74, 207-210(1989).

    [65] E A Mironov, O V Palashov, D N Karimov. EuF2-based crystals as media for high-power mid-infrared Faraday isolators. Scripta Materialia, 162, 54-57(2019).

    Jie Chen, Shengming Zhou. Review of magneto-optic materials for high power laser isolators (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201072
    Download Citation