• Photonics Research
  • Vol. 9, Issue 11, 2144 (2021)
Yansheng Liang1, Shaohui Yan2, Zhaojun Wang1, Baoli Yao2、3, and Ming Lei1、*
Author Affiliations
  • 1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 3e-mail: yaobl@opt.ac.cn
  • show less
    DOI: 10.1364/PRJ.431413 Cite this Article Set citation alerts
    Yansheng Liang, Shaohui Yan, Zhaojun Wang, Baoli Yao, Ming Lei. Off-axis optical levitation and transverse spinning of metallic microparticles[J]. Photonics Research, 2021, 9(11): 2144 Copy Citation Text show less
    References

    [1] E. A. Coronado, E. R. Encina, F. D. Stefani. Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale, 3, 4042-4059(2011).

    [2] A. Saneja, J. Meena, A. Gupta, A. K. Panda, E. Lichtfouse, R. Ahuja, A. K. Panda, S. Bhaskar. Inorganic particles for delivering natural products. Sustainable Agriculture Reviews 44: Pharmaceutical Technology for Natural Products Delivery, 2, 205-241(2020).

    [3] S. K. Dondapati, T. K. Sau, C. Hrelescu, T. A. Klar, F. D. Stefani, J. Feldmann. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano, 4, 6318-6322(2010).

    [4] P. Bharadwaj, B. Deutsch, L. Novotny. Optical antennas. Adv. Opt. Photon., 1, 438-483(2009).

    [5] V. Kotaidis, A. Plech. Cavitation dynamics on the nanoscale. Appl. Phys. Lett., 87, 213102(2005).

    [6] W. Huang, W. Qian, M. A. El-Sayed. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance. J. Am. Chem. Soc., 128, 13330-13331(2006).

    [7] D. Jaque, L. M. Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. Plaza, E. M. Rodriguez, J. G. Sole. Nanoparticles for photothermal therapies. Nanoscale, 6, 9494-9530(2014).

    [8] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 19, 930-932(1994).

    [9] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, C.-W. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [10] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [11] P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede. Expanding the optical trapping range of gold nanoparticles. Nano Lett., 5, 1937-1942(2005).

    [12] J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang. FDTD approach to optical forces of tightly focused vector beams on metal particles. Opt. Express, 17, 8407-8416(2009).

    [13] F. Hajizadeh, S. N. S. Reihani. Optimized optical trapping of gold nanoparticles. Opt. Express, 18, 551-559(2010).

    [14] L. Huang, H. Guo, J. Li, L. Ling, B. Feng, Z.-Y. Li. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt. Lett., 37, 1694-1696(2012).

    [15] L. Jauffred, S. M. Taheri, R. Schmitt, H. Linke, L. B. Oddershede. Optical trapping of gold nanoparticles in air. Nano Lett., 15, 4713-4719(2015).

    [16] H. Furukawa, I. Yamaguchi. Optical trapping of metallic particles by a fixed Gaussian beam. Opt. Lett., 23, 216-218(1998).

    [17] P. C. Ke, M. Gu. Characterization of trapping force on metallic Mie particles. Appl. Opt., 38, 160-167(1999).

    [18] M. Gu, D. Morrish, P. C. Ke. Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam. Appl. Phys. Lett., 77, 34-36(2000).

    [19] M. Gu, D. Morrish. Three-dimensional trapping of Mie metallic particles by the use of obstructed laser beams. J. Appl. Phys., 91, 1606-1612(2002).

    [20] Y. Zhang, X. Dou, Y. Dai, X. Wang, C. Min, X. Yuan. All-optical manipulation of micrometer-sized metallic particles. Photon. Res., 6, 66-71(2018).

    [21] K. Sakai, S. Noda. Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser. Electron. Lett., 43, 107-108(2007).

    [22] Z. Shen, L. Su, X. C. Yuan, Y. C. Shen. Trapping and rotating of a metallic particle trimer with optical vortex. Appl. Phys. Lett., 109, 241901(2016).

    [23] P. Galajda, P. Ormos. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett., 80, 4653-4655(2002).

    [24] R. L. Eriksen, P. J. Rodrigo, V. R. Daria, J. Glückstad. Spatial light modulator controlled alignment and spinning of birefringent particles optically trapped in an array. Appl. Opt., 42, 5107-5111(2003).

    [25] P. L. Marston, J. H. Crichton. Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave. Phys. Rev. A, 30, 2508-2516(1984).

    [26] Y. Zhao, D. Shapiro, D. McGloin, D. T. Chiu, S. Marchesini. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Opt. Express, 17, 23316-23322(2009).

    [27] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [28] A. T. O’Neil, M. J. Padgett. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun., 185, 139-143(2000).

    [29] N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett., 22, 52-54(1997).

    [30] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [31] P. H. Jones, O. M. Maragò, G. Volpe. Optical tweezers: Principles and Applications(2015).

    [32] P. C. Waterman. New formulation of acoustic scattering. J. Acoust. Soc. Am., 45, 1417-1429(1969).

    [33] P. C. Waterman. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825-839(1971).

    [34] I. M. Michael, D. Larry. Scattering, Absorption and Emission of Light by Small Particles(2002).

    [35] S. Yan, B. Yao. Transverse trapping forces of focused Gaussian beam on ellipsoidal particles. J. Opt. Soc. Am. B, 24, 1596-1602(2007).

    [36] S. Yan, B. Yao. Radiation forces of a highly focused radially polarized beam on spherical particles. Phys. Rev. A, 76, 053836(2007).

    [37] E. Wolf. Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proc. R. Soc. London A, 253, 349-357(1959).

    [38] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. London A, 253, 358-379(1959).

    [39] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop. Numerical modelling of optical trapping. Comput. Phys. Commun., 142, 468-471(2001).

    [40] S. Adachi. The Handbook on Optical Constants of Metals: In Tables and Figures(2012).

    [41] M. Li, S. Yan, B. Yao, Y. Liang, G. Han, P. Zhang. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. J. Opt. Soc. Am. A, 33, 1341-1347(2016).

    [42] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer, D. Windey, F. Tebbenjohanns, L. Novotny. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [43] J. Ahn, Z. Xu, J. Bang, Y.-H. Deng, T. M. Hoang, Q. Han, R.-M. Ma, T. Li. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [44] G. Pesce, G. Volpe, A. C. D. Luca, G. Rusciano, G. Volpe. Quantitative assessment of non-conservative radiation forces in an optical trap. Europhys. Lett., 86, 38002(2009).

    [45] H. Gao, Y. Xu, K. Yao, Y. Liu. Self-assembly of silica–gold core–shell microparticles by electric fields toward dynamically tunable metamaterials. ACS Appl. Mater. Interfaces, 13, 14417-14422(2021).

    Yansheng Liang, Shaohui Yan, Zhaojun Wang, Baoli Yao, Ming Lei. Off-axis optical levitation and transverse spinning of metallic microparticles[J]. Photonics Research, 2021, 9(11): 2144
    Download Citation