• Photonics Research
  • Vol. 11, Issue 5, 712 (2023)
Xin Li1, Wei Gao1, Liangjun Lu1、2、*, Jianping Chen1、2, and Linjie Zhou1、2
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu 314200, China
  • show less
    DOI: 10.1364/PRJ.479499 Cite this Article Set citation alerts
    Xin Li, Wei Gao, Liangjun Lu, Jianping Chen, Linjie Zhou. Ultra-low-loss multi-layer 8 × 8 microring optical switch[J]. Photonics Research, 2023, 11(5): 712 Copy Citation Text show less
    References

    [1] T. Dong, L. Meng, J. Wang, K. Li. Research and simulation of OCDM switch layer based on 2D WDM-optical code switching structure. J. Phys. Conf. Ser., 2384, 012027(2022).

    [2] K. Sato. Realization and application of large-scale fast optical circuit switch for data center networking. J. Lightwave Technol., 36, 1411-1419(2018).

    [3] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik, F. Karinou, S. Lange, K. Shi, B. Thomsen, H. Williams. Sirius: a flat datacenter network with nanosecond optical switching. Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, 782-797(2020).

    [4] H. Tsuda. Silicon photonics platforms for optical communication systems, outlook on future developments. IEICE Electron. Express, 17, 20202002(2020).

    [5] K. Asakawa, Y. Sugimoto, S. Nakamura. Silicon photonics for telecom and data-com applications. Opto-Electron. Adv., 3, 20001101(2020).

    [6] D. Dai, D. Liang, P. Cheben. Next-generation silicon photonics: introduction. Photon. Res., 10, NGSP1-NGSP3(2022).

    [7] T. J. Seok, K. Kwon, J. Henriksson, J. Luo, M. C. Wu. Wafer-scale silicon photonic switches beyond die size limit. Optica, 6, 490-494(2019).

    [8] L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, J. Chen. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express, 24, 9295-9307(2016).

    [9] S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, J. Chen. 16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res., 4, 202-207(2016).

    [10] L. Qiao, W. Tang, T. Chu. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep., 7, 42306(2017).

    [11] P. Dumais, D. J. Goodwill, D. Celo, J. Jiang, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, E. Bernier. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Lightwave Technol., 36, 233-238(2018).

    [12] K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, H. Kawashima. Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-Δ silica PLC connector. J. Lightwave Technol., 37, 116-122(2019).

    [13] W. Gao, X. Li, L. Lu, J. Chen, L. Zhou. Broadband, low-crosstalk and power-efficient 32 × 32 optical switch on a dual-layer Si3N4-on-SOI platform. Optical Fiber Communications Conference and Exhibition (OFC), W4B.4(2022).

    [14] S.-J. Chang, C.-Y. Ni, Z. Wang, Y.-J. Chen. A compact and low power consumption optical switch based on microrings. IEEE Photon. Technol. Lett., 20, 1021-1023(2008).

    [15] A. W. Poon, X. Luo, F. Xu, H. Chen. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proc. IEEE, 97, 1216-1238(2009).

    [16] P. DasMahapatra, R. Stabile, A. Rohit, K. A. Williams. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron., 20, 5900410(2014).

    [17] Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, K. Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res., 7, 155-161(2019).

    [18] Q. Cheng, M. Bahadori, Y.-H. Hung, Y. Huang, N. Abrams, K. Bergman. Scalable microring-based silicon Clos switch fabric with switch-and-select stages. IEEE J. Sel. Top. Quantum Electron., 25, 3600111(2019).

    [19] M. R. Yahya, N. Wu, F. Zhou, G. Z. Yan, F. Ge, Z. U. Abidin. SMOR: design of an optimized 5 × 5 nonblocking optical router for photonic NoCs constructed via silicon microring optical switch. Opt. Eng., 59, 046104(2020).

    [20] X. Guo, T. Dai, B. Chen, Y. Wang, H. Yu, J. Yang. An ultra-compact 4 × 4 and 8 × 8 optical switch based on dual-microring resonators. IEEE Photon. Technol. Lett., 32, 1365-1368(2020).

    [21] Y. Huang, Q. Cheng, Y.-H. Hung, H. Guan, X. Meng, A. Novack, M. Streshinsky, M. Hochberg, K. Bergman. Multi-stage 8 × 8 silicon photonic switch based on dual-microring switching elements. J. Lightwave Technol., 38, 194-201(2020).

    [22] A. S. P. Khope, M. Saeidi, R. Yu, X. Wu, A. M. Netherton, Y. Liu, Z. Zhang, Y. Xia, G. Fleeman, A. Spott, S. Pinna, C. Schow, R. Helkey, L. Theogarajan, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. Multi-wavelength selective crossbar switch. Opt. Express, 27, 5203-5216(2019).

    [23] A. S. P. Khope, S. Liu, Z. Zhang, A. M. Netherton, R. L. Hwang, A. Wissing, J. Perez, F. Tang, C. Schow, R. Helkey, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. 2λ switch. Opt. Lett., 45, 5340-5343(2020).

    [24] A. S. P. Khope, R. Helkey, S. Liu, S. Khope, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. Scalable multicast hybrid broadband-crossbar wavelength selective switch: proposal and analysis. Opt. Lett., 46, 448-451(2021).

    [25] M. Nikdast, G. Nicolescu, J. Trajkovic, O. Liboiron-Ladouceur. Chip-scale silicon photonic interconnects: a formal study on fabrication non-uniformity. J. Lightwave Technol., 34, 3682-3695(2016).

    [26] L. Zhang, S. Hong, Y. Wang, H. Yan, Y. Xie, T. Chen, M. Zhang, Z. Yu, Y. Shi, L. Liu, D. Dai. Ultralow-loss silicon photonics beyond the singlemode regime. Laser Photon. Rev., 16, 2100292(2022).

    [27] L. Song, T. Chen, W. Liu, H. Liu, Y. Peng, Z. Yu, H. Li, Y. Shi, D. Dai. Toward calibration-free Mach–Zehnder switches for next-generation silicon photonics. Photon. Res., 10, 793-801(2022).

    [28] J. C. C. Mak, W. D. Sacher, J. C. Mikkelsen, T. Xue, Z. Yong, J. K. S. Poon. Automated calibration of high-order microring filters. CLEO: 2015, SW1N.2(2015).

    [29] A. Gazman, C. Browning, Z. Zhu, L. R. Barry, K. Bergman. Automated thermal stabilization of cascaded silicon photonic ring resonators for reconfigurable WDM applications. European Conference on Optical Communication (ECOC), 1-3(2017).

    [30] A. S. P. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. M. Saleh, J. E. Bowers, R. C. Alferness. On-chip wavelength locking for photonic switches. Opt. Lett., 42, 4934-4937(2017).

    [31] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol., 32, 505-512(2014).

    [32] M. Hattink, L. Y. Dai, Z. Zhu, K. Bergman. Streamlined architecture for thermal control and stabilization of cascaded DWDM micro-ring filters bus. Optical Fiber Communication Conference (OFC), W2A.2(2022).

    [33] F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, A. Melloni. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron., 20, 292-301(2014).

    [34] H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, S. Shekhar. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt. Express, 23, 25084-25097(2015).

    [35] Q. Zhu, S. An, R. Cao, Y. Ling, Y. Su. Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch. Optical Fiber Communication Conference (OFC), W1E.1(2019).

    [36] G. Qin, Q. Zhu, Y. Su. Fast wavelength seeking in a silicon dual-ring switch based on artificial neural networks. J. Lightwave Technol., 38, 5078-5085(2020).

    [37] W. Gao, L. Lu, L. Zhou, J. Chen. Automatic calibration of silicon ring-based optical switch powered by machine learning. Opt. Express, 28, 10438-10455(2020).

    [38] H. Yang, Y. Kuan, T. Xiang, Y. Zhu, X. Cai, L. Liu. Broadband polarization-insensitive optical switch on silicon-on-insulator platform. Opt. Express, 26, 14340-14345(2018).

    [39] S. Wang, D. Dai. Polarization-insensitive 2 × 2 thermo-optic Mach–Zehnder switch on silicon. Opt. Lett., 43, 2531-2534(2018).

    [40] X. R. Li, L. J. Lu, W. Gao, X. Li, J. P. Chen, L. J. Zhou. Silicon non-blocking 4 × 4 optical switch with automated polarization adjustment. Chin. Opt. Lett., 19, 101302(2021).

    [41] K. Tanizawa, K. Suzuki, S. Suda, K. Ishii, J. Kurumida, G. Cong, T. Inoue, K. Ikeda, S. Namiki, H. Kawashima. Off-chip polarization-diversity 4 × 4 Si-wire optical switch with digital DGD compensation. IEEE Photon. Technol. Lett., 28, 457-460(2016).

    [42] K. Suzuki, K. Tanizawa, S. H. Kim, S. Suda, G. Cong, K. Ikeda, S. Namiki, H. Kawashima. Polarization-rotator-free polarization-diversity 4 × 4 Si-wire optical switch. IEEE Photon. J., 8, 0600707(2016).

    [43] K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, H. Kawashima. Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches. Opt. Express, 25, 7538-7546(2017).

    [44] T. Kurosu, T. Inoue, K. Suzuki, S. Suda, S. Namiki. High-capacity multi-stage operation of polarization-diversity silicon photonics 8 × 8 optical switch. J. Lightwave Technol., 37, 131-137(2019).

    [45] H. Yang, Q. Cheng, R. Chen, K. Bergman. Polarization-diversity microring-based optical switch fabric in a switch-and-select architecture. Optical Fiber Communications Conference and Exhibition (OFC), Th3B.2(2020).

    [46] K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, H. Kawashima. Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch. Opt. Express, 24, 6861-6868(2016).

    [47] K. Tanizawa, K. Suzuki, K. Ikeda, S. Namiki, H. Kawashima. Non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch integrated with polarization splitter-rotators. Opt. Express, 25, 10885-10892(2017).

    [48] K. Suzuki, S. Namiki, H. Kawashima, K. Ikeda, R. Konoike, N. Yokoyama, M. Seki, M. Ohtsuka, S. Saitoh, S. Suda, H. Matsuura, K. Yamada. Nonduplicate polarization-diversity 32 × 32 silicon photonics switch based on a SiN/Si double-layer platform. J. Lightwave Technol., 38, 226-232(2020).

    [49] R. Konoike, K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, S. Namiki, H. Kawashima, K. Ikeda. SiN/Si double-layer platform for ultralow-crosstalk multiport optical switches. Opt. Express, 27, 21130-21141(2019).

    [50] W. Xu, Y. Guo, X. Li, C. Liu, L. Lu, J. Chen, L. Zhou. Fully integrated solid-state LiDAR transmitter on a multi-layer silicon-nitride-on-silicon photonic platform. Optical Fiber Communication Conference (OFC), Th1E.4(2022).

    [51] Q. Wang, S. Wang, L. Jia, Y. Cai, W. Yue, M. Yu. Silicon nitride assisted 1 × 64 optical phased array based on a SOI platform. Opt. Express, 29, 10509-10517(2021).

    [52] W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. C. Mak, Z. Yong, X. S. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, J. K. S. Poon. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE, 106, 2232-2245(2018).

    [53] A. Chatterjee, S. K. Yadav, S. K. Sikdar, S. K. Selvaraja. Compact ring resonator enhanced silicon metal-semiconductor-metal photodetector in SiN-on-SOI platform. Opt. Express, 28, 33644-33655(2020).

    [54] X. Li, W. Gao, L. Lu, J. Chen, L. Zhou. 8 × 8 microring optical switch on a dual-layer Si3N4-on-SOI platform. Asia Communications and Photonics Conference, T1I.1(2021).

    [55] A. Li, W. Bogaerts. Using backscattering and backcoupling in silicon ring resonators as a new degree of design freedom. Laser Photon. Rev., 13, 1800244(2019).

    [56] D. Dai, J. E. Bowers. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express, 19, 10940-10949(2011).

    [57] D. Dai, J. E. Bowers. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt. Express, 19, 18614-18620(2011).

    [58] W. D. Sacher, T. Barwicz, J. K. S. Poon. Silicon-on-insulator polarization splitter-rotator based on TM0-TE1 mode conversion in a bi-level taper. CLEO Science and Innovations, CTu3F.3(2013).

    Xin Li, Wei Gao, Liangjun Lu, Jianping Chen, Linjie Zhou. Ultra-low-loss multi-layer 8 × 8 microring optical switch[J]. Photonics Research, 2023, 11(5): 712
    Download Citation