• Photonics Research
  • Vol. 8, Issue 1, 8 (2020)
Alicia Petronela Rambu1, Alin Marian Apetrei1, Florent Doutre2, Hervé Tronche2, Vasile Tiron3, Marc de Micheli2, and Sorin Tascu1、*
Author Affiliations
  • 1Research Center on Advanced Materials and Technologies, Science Department, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
  • 2Université Côte d’Azur, CNRS, Institut de Physique de Nice (INPHYNI), UMR 7010, Nice, France
  • 3Research Department, Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
  • show less
    DOI: 10.1364/PRJ.8.000008 Cite this Article Set citation alerts
    Alicia Petronela Rambu, Alin Marian Apetrei, Florent Doutre, Hervé Tronche, Vasile Tiron, Marc de Micheli, Sorin Tascu. Lithium niobate waveguides with high-index contrast and preserved nonlinearity fabricated by a high vacuum vapor-phase proton exchange[J]. Photonics Research, 2020, 8(1): 8 Copy Citation Text show less
    References

    [1] W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min. Integrated optical devices in lithium niobate. Opt. Photonics News, 19, 24-31(2008).

    [2] G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, W. Sohler. Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides. Proc. SPIE, 4277, 144-160(2001).

    [3] M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, M. M. Fejer. Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide. IEEE Photonics Technol. Lett., 12, 82-84(2000).

    [4] M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, H. Suzuki. Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion. IEEE J. Quantum Electron., 41, 1540-1547(2005).

    [5] I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, M. M. Fejer. 160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter. Electron Lett., 36, 1788-1790(2000).

    [6] J. L. Jackel, J. J. Johnson. Reverse exchange method for burying proton exchanged waveguides. Electron. Lett., 27, 1360-1361(1991).

    [7] L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, D. J. Bamford. Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions. Appl. Phys. Lett., 76, 1089-1091(2000).

    [8] Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, T. V. Morozova, F. Caccavale, F. Segato, C. Sada, S. M. Kostritskii. Characterization of alpha-phase soft proton-exchanged LiNbO3 optical waveguides. J. Opt. Soc. Am. A, 18, 1186-1191(2001).

    [9] D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, P. Baldi. High performance mode adapters based on segmented SPE:LiNbO3 waveguides. Opt. Express, 17, 17868-17873(2009).

    [10] D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. De Micheli, P. Baldi. Soft proton exchange tapers for low insertion loss LiNbO3 devices. J. Lightwave Technol., 25, 1588-1593(2007).

    [11] F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, G. Mussi. Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides. J. Appl. Phys., 78, 5345-5350(1995).

    [12] J. L. Jackel, C. E. Rice, J. J. Veselka. Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett., 41, 607-608(1982).

    [13] F. Laurell, M. G. Roelofs, H. Hsiung. Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides. Appl. Phys. Lett., 60, 301-303(1992).

    [14] O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, M. De Micheli. Crystallographic and optical properties of Z-cut high index soft proton exchange (HISoPE) LiNbO3 waveguides. J. Lightwave Technol., 34, 2206-2212(2016).

    [15] A. P. Rambu, A. M. Apetrei, F. Doutre, H. Tronche, M. De Micheli, S. Tascu. Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange. J. Lightwave Technol., 36, 2675-2684(2018).

    [16] A. P. Rambu, A. M. Apetrei, S. Tascu. Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange. Opt. Laser Technol., 118, 109-114(2019).

    [17] T. Lunghi, F. Doutre, A. P. Rambu, M. Bellec, M. P. de Micheli, A. M. Apetrei, O. Alibart, N. Belabas, S. Tascu, S. Tanzilli. Broadband integrated beam splitter using spatial adiabatic passage. Opt. Express, 26, 27058-27063(2018).

    [18] P. J. Masalkar, M. Fujimura, T. Suhara, H. Nishihara. Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3. Electron. Lett., 33, 519-520(1997).

    [19] J. Rams, J. Olivares, J. M. Cabrera. High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients. Appl. Phys. Lett., 70, 2076-2078(1997).

    [20] J. Rams, F. Agulló-Rueda, J. M. Cabrera. Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients. Appl. Phys. Lett., 71, 3356-3358(1997).

    [21] J. Rams, J. M. Cabrera. Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: effect of the vapor pressure. J. Appl. Phys., 85, 1322-1328(1999).

    [22] J. Rams, J. M. Cabrera. Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor. J. Opt. Soc. Am. B, 16, 401-406(1999).

    [23] R. Osellame, R. Ramponi, M. Maramgoni, V. Russo. Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange. Electron. Lett., 36, 431-433(2000).

    [24] R. Ramponi, R. Osellame, M. Maramgoni, V. Russo. Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication. Proc. SPIE, 4277, 125-132(2001).

    [25] D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, Y. C. Huang. Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides. Mater. Chem. Phys., 78, 474-479(2002).

    [26] M. K. Kuneva, S. H. Tonchev, P. S. Dimitrova. Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4. J. Mater. Sci.: Mater. Electron., 14, 859-861(2003).

    [27] O. Stepanenko. Towards proton exchanged quantum wires and highly confining integrated circuits on LiNbO3(2013).

    [28] L. Chanvillard. Interactions paramétriques guides de grand efficacité: utilisation de l’échange protonique doux sur niobate de lithium inversé périodiquement(1999).

    [29] C. E. Rice. The structure and properties of Li1-xHxNbO3. J. Solid State Chem., 64, 188-199(1986).

    [30] Yu. N. Korkishko, V. A. Fedorov. Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties. IEEE J. Sel. Top. Quantum Electron., 2, 187-196(1996).

    [31] Y. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, A. Leycuras. Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate. Appl. Opt., 35, 7056-7060(1996).

    [32] P. K. Tien, R. Ulrich. Theory of prism-film coupler and thin-film light guides. J. Opt. Soc. Am., 60, 1325-1337(1970).

    [33] J. M. White, P. F. Heidrich. Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis. Appl. Opt., 15, 151-155(1976).

    [34] S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, V. Gopalan. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc., 94, 2699-2727(2011).

    [35] K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell. Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides. J. Opt. Soc. Am. B, 14, 3197-3203(1997).

    [36] J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, T. Fukui. Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope. J. Appl. Phys., 104, 054112(2008).

    [37] Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, E. Pelletier. Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser. Opt. Commun., 89, 54-58(1992).

    [38] J. D. Webb. Fabrication of annealed proton-exchanged waveguides for vertical integration(2011).

    [39] D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, M. R. Shenoy. All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices. Opt. Eng., 46, 124601(2007).

    [40] S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi. Loss mechanisms and hybrid modes in high-δne proton-exchanged planar waveguides. Opt. Lett., 18, 1314-1316(1993).

    [41] A. Knoesen, T. K. Gaylord, M. G. Moharam. Hybrid guided modes in uniaxial dielectric planar waveguides. J. Lightwave Technol., 6, 1083-1104(1988).

    Alicia Petronela Rambu, Alin Marian Apetrei, Florent Doutre, Hervé Tronche, Vasile Tiron, Marc de Micheli, Sorin Tascu. Lithium niobate waveguides with high-index contrast and preserved nonlinearity fabricated by a high vacuum vapor-phase proton exchange[J]. Photonics Research, 2020, 8(1): 8
    Download Citation