• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 120501 (2017)
Bai Yunfeng1、*, Fan Jie2, Zou Yonggang1, Wang Haizhu1, Hai Yina1, and Tian Kun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.120501 Cite this Article Set citation alerts
    Bai Yunfeng, Fan Jie, Zou Yonggang, Wang Haizhu, Hai Yina, Tian Kun. Fabrication of Gratings Used in 976 nm Distributed Feedback Lasers Based on Laser Interference Lithography[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120501 Copy Citation Text show less
    References

    [1] Fessant T. Gaussian-like tapered grating quarter wave-shifted DFB semiconductor lasers for high-power single-mode operation[J]. Applied Physics B, 1998, 67(6): 769-772.

    [2] Kamp M, Koeth J. High-power pulsed 976-nm DFB laser diodes[C]. SPIE, 2010, 7682: 76820T.

    [3] DiLazaro T, Nehmetallah G. Optical frequency-domain reflectometry using multiple wavelength-swept elements of a DFB laser array[C]. SPIE, 2017, 10110: 101100I.

    [4] Inoue D, Kai F, Nishiyama N, et al. Low-bias current 10 Gbit/s direct modulation of GaInAsP/InP membrane DFB laser on silicon[J]. Optics Express, 2016, 24(16): 18571-18579.

    [5] Blauvelt H A, Kwong N S, Chen P C, et al. Optimum range for DFB laser chirp for fiber-optic AM video transmission[J]. Journal of Lightwave Technology,1993, 11(1): 55-59.

    [6] Wang Qi, Guo Jinjin, Chen Wei, et al. Widelytunable distributed feedback semiconductor lasers with constant power and narrow linewidth[J]. Chinese J Lasers, 2017, 44(1): 0101004.

    [7] Zuo Qiang, Yu Haitao, Yang Yuzhi. Design of an asymmetric three corrugation-pitch-modulated DFB laser for improving output efficiency and stable single longitudinal mode operation[J]. Infrared & Laser Engineering, 2013, 42(s2): 451-455.

    [8] Zhu Hongliang, Xu Xiaodong, Wang Huan, et al. The study of distributed feedback laser arrays based on sampled gratings[J]. Journal of Optoelectronics·Laser, 2010, 21(9): 1280-1282.

    [9] Zheng J, Xia D, Tang S, et al. DFBsemiconductor laser with discrete coupling coefficient based on the equivalent technique[J]. IEEE Photonics Journal, 2015, 7(3): 1502408.

    [10] Fricke J, Decker J, Maassdorf A, et al. DFB lasers with apodized surface gratings for wavelength stabilization and high efficiency[J]. Semiconductor Science & Technology, 2017, 32(7): 075012.

    [11] Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography[J]. Journal of Vacuum Science & Technology B, 1996, 14(6): 4129-4133.

    [12] Vieu C, Carcenac F, Pepin A, et al. Electron beam lithography: Resolution limits and applications[J]. Applied Surface Science, 2000, 164(1): 111-117.

    [13] Henk W V, Abelmann L, Hennessy T C. Laser interference lithography[J]. Lithography Principles Processes & Materials, 2011, 23(3): 133-148.

    [14] Makino T, Glinski J. Effects of radiation loss on the performance of second-order DFB semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(1): 73-82.

    [15] Du Baoxun. Principles of semiconductor lasers[M]. Tianjin: Weapon Industry Press, 2004.

    [16] Shams-Zadeh-Amiri A M, Hong J, Li X, et al. Second- and higher-order resonant gratings with gain or loss-Part 1: Green′s function analysis[J]. IEEE Journal of Quantum Electronics, 2000, 36(12): 1421-1430.

    [17] He Anguo, Yu Honglin, Zhu Chuanxin, et al. Subdivision and direction judgment of grating Moiré fringes[J]. Opto-Electronic Engineering, 2007, 34(10): 45-49.

    CLP Journals

    [1] Xin Li, Jian Wang, Ning Yang, Weidong Chu. Optical Characteristics of Second-Order Distributed Feedback Terahertz Quantum Cascade Laser[J]. Acta Optica Sinica, 2018, 38(4): 0414002

    [2] Kang Wang, Yu Jin, Yuwei Liu, Zhixiang Li, Xin Luo, Zhijun Wu, Chunping Xiang. Preparation and Characterization of Multi-Morphological and Multi-Periodical Micro-Nano Composite Structures[J]. Laser & Optoelectronics Progress, 2019, 56(12): 120501

    Bai Yunfeng, Fan Jie, Zou Yonggang, Wang Haizhu, Hai Yina, Tian Kun. Fabrication of Gratings Used in 976 nm Distributed Feedback Lasers Based on Laser Interference Lithography[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120501
    Download Citation