• Laser & Optoelectronics Progress
  • Vol. 59, Issue 1, 0114007 (2022)
Hailong Shao1、2, Zixiong Lin2, Zheng Zhang2, Yichao Wang2, Ming Shi2, and Wenxiong Lin2、*
Author Affiliations
  • 1College of Chemistry, Fuzhou University, Fuzhou , Fujian 350108, China
  • 2Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou , Fujian 350002, China
  • show less
    DOI: 10.3788/LOP202259.0114007 Cite this Article Set citation alerts
    Hailong Shao, Zixiong Lin, Zheng Zhang, Yichao Wang, Ming Shi, Wenxiong Lin. Selective Laser Melting Process of Titanium Alloy Based on Single-Track Structure and Linear and Volumetric Energy Densities[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114007 Copy Citation Text show less
    References

    [1] Zhang L C, Chen L Y. A review on biomedical titanium alloys: recent progress and prospect[J]. Advanced Engineering Materials, 21, 1801215(2019).

    [2] Dong Y P, Li Y L, Zhou S Y et al. Cost-affordable Ti-6Al-4V for additive manufacturing: powder modification, compositional modulation and laser in situ alloying[J]. Additive Manufacturing, 37, 101699(2021).

    [3] Bartolomeu F, Faria S, Carvalho O et al. Predictive models for physical and mechanical properties of Ti6Al4V produced by selective laser melting[J]. Materials Science and Engineering A, 663, 181-192(2016).

    [4] Promoppatum P, Onler R, Yao S C. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products[J]. Journal of Materials Processing Technology, 240, 262-273(2017).

    [5] Sorkin A, Tan J L, Wong C H. Multi-material modelling for selective laser melting[J]. Procedia Engineering, 216, 51-57(2017).

    [6] Nasab M H, Gastaldi D, Lecis N F et al. On morphological surface features of the parts printed by selective laser melting (SLM)[J]. Additive Manufacturing, 24, 373-377(2018).

    [7] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [8] Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties[J]. Progress in Materials Science, 74, 401-477(2015).

    [9] Mishra A K, Kumar A. Numerical and experimental analysis of the effect of volumetric energy absorption in powder layer on thermal-fluidic transport in selective laser melting of Ti6Al4V[J]. Optics & Laser Technology, 111, 227-239(2019).

    [10] Zhang S, Gui R Z, Wei Q S et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 49, 21-27(2013).

    [11] He B B, Wu W H, Zhang L et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting[J]. Vacuum, 150, 79-83(2018).

    [12] Tucho W M, Lysne V H, Austbø H et al. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L[J]. Journal of Alloys and Compounds, 740, 910-925(2018).

    [13] Tran H C, Lo Y L. Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 105, 4443-4460(2019).

    [14] Tan Q Y, Liu Y G, Fan Z Q et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 58, 34-45(2020).

    [15] Wang Z, Xiao Z Y, Tse Y et al. Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy[J]. Optics & Laser Technology, 112, 159-167(2019).

    [16] Li Y L, Gu D D. Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study[J]. Additive Manufacturing, 1/2/3/4, 99-109(2014).

    [17] Zhang G H, Guo S Q, Huang S et al. Relative density of GH4169 superalloy prepared by selective laser melting[J]. Laser & Optoelectronics Progress, 57, 031404(2020).

    [18] Guo M, Gu D D, Xi L X et al. Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: morphology, geometric features and forming mechanisms[J]. International Journal of Refractory Metals and Hard Materials, 79, 37-46(2019).

    [19] Guo M, Gu D D, Xi L X et al. Selective laser melting additive manufacturing of pure tungsten: role of volumetric energy density on densification, microstructure and mechanical properties[J]. International Journal of Refractory Metals and Hard Materials, 84, 105025(2019).

    [20] Ferro P, Meneghello R, Savio G et al. A modified volumetric energy density-based approach for porosity assessment in additive manufacturing process design[J]. The International Journal of Advanced Manufacturing Technology, 110, 1911-1921(2020).

    [21] Yan X C, Chang C, Dong D D et al. Microstructure and mechanical properties of pure copper manufactured by selective laser melting[J]. Materials Science and Engineering A, 789, 139615(2020).

    [22] Kim W R, Bang G B, Park J H et al. Microstructural study on a Fe-10Cu alloy fabricated by selective laser melting for defect-free process optimization based on the energy density[J]. Journal of Materials Research and Technology, 9, 12834-12839(2020).

    [23] Xiang Z W, Yin M, Dong G H et al. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting[J]. Results in Physics, 9, 939-946(2018).

    [24] Prashanth K G, Scudino S, Maity T et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting?[J]. Materials Research Letters, 5, 386-390(2017).

    [25] Zong X W, Gao Q, Zhou H Z et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 46, 0502003(2019).

    [26] Dong Z C, Liu Y B, Wen W B et al. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches[J]. Materials, 12, 50(2018).

    [27] Khorasani A, Gibson I, Awan U S et al. The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V[J]. Additive Manufacturing, 25, 176-186(2019).

    [28] Wang Y F, Yu C F, Xing L L et al. Grain structure and texture of the SLM single track[J]. Journal of Materials Processing Technology, 281, 116591(2020).

    [29] Yadroitsev I, Krakhmalev P, Yadroitsava I et al. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder[J]. Journal of Materials Processing Technology, 213, 606-613(2013).

    [30] Gusarov A V, Yadroitsev I, Bertrand P et al. Heat transfer modelling and stability analysis of selective laser melting[J]. Applied Surface Science, 254, 975-979(2007).

    [31] Hu Z H, Nagarajan B, Song X et al. Formation of SS316L single tracks in micro selective laser melting: surface, geometry, and defects[J]. Advances in Materials Science and Engineering, 2019, 1-9(2019).

    [32] Shi X Z, Ma S Y, Liu C M et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks[J]. Optics & Laser Technology, 90, 71-79(2017).

    [33] Fan Z Q, Lu M Y, Huang H. Selective laser melting of alumina: a single track study[J]. Ceramics International, 44, 9484-9493(2018).

    [34] Bi J, Lei Z L, Chen Y B et al. Effect of process parameters on formability and surface quality of selective laser melted Al-Zn-Sc-Zr alloy from single track to block specimen[J]. Optics & Laser Technology, 118, 132-139(2019).

    [35] Zhang G Q, Gu D D. Selective laser melting of TiC solid solution strengthened tungsten matrix composites[J]. Rare Metal Materials and Engineering, 44, 1017-1023(2015).

    [36] Xiang Y, Zhang S Z, Li J F et al. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of Zhejiang University (Engineering Science), 53, 2102-2109, 2117(2019).

    [37] Maamoun A H, Xue Y F, Elbestawi M A et al. Effect of SLM process parameters on the quality of al alloy parts; part i: powder characterization, density, surface roughness, and dimensional accuracy[J]. Materials, 11, 23-43(2018).

    [38] Li R D, Liu J H, Shi Y S et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 59, 1025-1035(2012).

    [39] Chen Z E, Wu X H, Tomus D et al. Surface roughness of Selective Laser Melted Ti-6Al-4V alloy components[J]. Additive Manufacturing, 21, 91-103(2018).

    [40] Xiao Z N, Liu T T, Liao W H et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 44, 0902001(2017).

    [41] Zhang W W, Qin P T, Wang Z et al. Superior wear resistance in EBM-processed TC4 alloy compared with SLM and forged samples[J]. Materials, 12, 782(2019).

    [42] Zhao Z Y, Li L, Bai P K et al. The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting[J]. Materials, 11, 1318(2018).

    Hailong Shao, Zixiong Lin, Zheng Zhang, Yichao Wang, Ming Shi, Wenxiong Lin. Selective Laser Melting Process of Titanium Alloy Based on Single-Track Structure and Linear and Volumetric Energy Densities[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114007
    Download Citation