• Photonics Research
  • Vol. 6, Issue 1, 37 (2018)
Yusheng Bian1、†, Qiang Ren1、2、†, Lei Kang1, Taiwei Yue1, Pingjuan L. Werner1, and Douglas H. Werner1、*
Author Affiliations
  • 1Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
  • 2School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.1364/PRJ.6.000037 Cite this Article Set citation alerts
    Yusheng Bian, Qiang Ren, Lei Kang, Taiwei Yue, Pingjuan L. Werner, Douglas H. Werner. Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides[J]. Photonics Research, 2018, 6(1): 37 Copy Citation Text show less
    References

    [1] A. F. Koenderink, A. Alu, A. Polman. Nanophotonics: shrinking light-based technology. Science, 348, 516-521(2015).

    [2] R. Kirchain, L. Kimerling. A roadmap for nanophotonics. Nat. Photonics, 1, 303-305(2007).

    [3] N. Kinsey, M. Ferrera, V. M. Shalaev, A. Boltasseva. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials. J. Opt. Soc. Am. B, 32, 121-142(2015).

    [4] Z. H. Han, S. I. Bozhevolnyi. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys., 76, 016402(2013).

    [5] C. L. Zhao, Y. M. Liu, Y. H. Zhao, N. Fang, T. J. Huang. A reconfigurable plasmofluidic lens. Nat. Commun., 4, 2305(2013).

    [6] R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics, 2, 496-500(2008).

    [7] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [8] V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, X. Zhang. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun., 2, 331(2011).

    [9] M. Z. Alam, J. S. Aitchison, M. Mojahedi. A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photon. Rev., 8, 394-408(2014).

    [10] D. X. Dai, S. L. He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express, 17, 16646-16653(2009).

    [11] X. W. Guan, H. Wu, D. X. Dai. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front. Optoelectron., 7, 300-319(2014).

    [12] M. Wu, Z. H. Han, V. Van. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt. Express, 18, 11728-11736(2010).

    [13] H. S. Chu, E. P. Li, P. Bai, R. Hegde. Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl. Phys. Lett., 96, 221103(2010).

    [14] X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, X. A. Zhang. Optical forces in hybrid plasmonic waveguides. Nano Lett., 11, 321-328(2011).

    [15] V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, X. Zhang. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1, 17-22(2012).

    [16] X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, M. Mojahedi. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Opt. Lett., 37, 4814-4816(2012).

    [17] X. W. Guan, H. Wu, Y. C. Shi, L. Wosinski, D. X. Dai. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett., 38, 3005-3008(2013).

    [18] R. M. Ma, S. Ota, Y. M. Li, S. Yang, X. Zhang. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotech., 9, 600-604(2014).

    [19] Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, T. Zhou. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt. Express, 17, 21320-21325(2009).

    [20] I. Goykhman, B. Desiatov, U. Levy. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Appl. Phys. Lett., 97, 141106(2010).

    [21] M. Z. Alam, J. Meier, J. S. Aitchison, M. Mojahedi. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt. Express, 18, 12971-12979(2010).

    [22] S. Y. Zhu, T. Y. Liow, G. Q. Lo, D. L. Kwong. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Opt. Express, 19, 8888-8902(2011).

    [23] J. T. Kim. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photon. Tech. Lett., 23, 1481-1483(2011).

    [24] L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, D. S. Gao. A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration. J. Lightwave Technol., 30, 163-168(2012).

    [25] C. C. Huang. Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement. IEEE J. Sel. Top. Quantum Electron., 18, 1661-1668(2012).

    [26] Y. S. Bian, Q. H. Gong. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Opt. Express, 21, 23907-23920(2013).

    [27] Y. Q. Ma, G. Farrell, Y. Semenova, Q. Wu. A hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement. J. Lightwave Technol., 33, 3827-3835(2015).

    [28] C. C. Gui, J. Wang. Wedge hybrid plasmonic THz waveguide with long propagation length and ultra-small deep-subwavelength mode area. Sci. Rep., 5, 11457(2015).

    [29] Y. S. Bian, Q. H. Gong. Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges. Laser Photon. Rev., 8, 549-561(2014).

    [30] Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, T. Zhou. Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove. J. Opt., 15, 055011(2013).

    [31] M. Lipson. Guiding, modulating, and emitting light on silicon—challenges and opportunities. J. Lightwave Technol., 23, 4222-4238(2005).

    [32] R. Soref. The past, present, and future of silicon photonics. IEEE J. Quantum Electron., 12, 1678-1687(2006).

    [33] H. Wei, H. X. Xu. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics, 1, 155-169(2012).

    [34] X. Guo, Y. G. Ma, Y. P. Wang, L. M. Tong. Nanowire plasmonic waveguides, circuits and devices. Laser Photon. Rev., 7, 855-881(2013).

    [35] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B, 73, 035407(2006).

    [36] R. Buckley, P. Berini. Figures of merit for 2D surface plasmon waveguides and application to metal stripes. Opt. Express, 15, 12174-12182(2007).

    [37] S. P. Zhang, H. X. Xu. Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides. ACS Nano, 6, 8128-8135(2012).

    [38] T. Holmgaard, S. I. Bozhevolnyi. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B, 75, 245405(2007).

    [39] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508-511(2006).

    [40] E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, F. J. Garcia-Vidal. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett., 100, 023901(2008).

    [41] L. Liu, Z. Han, S. He. Novel surface plasmon waveguide for high integration. Opt. Express, 13, 6645-6650(2005).

    [42] G. Veronis, S. H. Fan. Modes of subwavelength plasmonic slot waveguides. J. Lightwave Technol., 25, 2511-2521(2007).

    [43] Y. S. Bian, Q. H. Gong. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale. Nanoscale, 7, 4415-4422(2015).

    [44] J. A. Conway, S. Sahni, T. Szkopek. Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. Opt. Express, 15, 4474-4484(2007).

    [45] G. Veronis, S. H. Fan. Crosstalk between three-dimensional plasmonic slot waveguides. Opt. Express, 16, 2129-2140(2008).

    [46] W. P. Huang. Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A, 11, 963-983(1994).

    [47] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett., 95, 257403(2005).

    [48] A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, M. A. Reed. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett., 6, 1822-1826(2006).

    Yusheng Bian, Qiang Ren, Lei Kang, Taiwei Yue, Pingjuan L. Werner, Douglas H. Werner. Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides[J]. Photonics Research, 2018, 6(1): 37
    Download Citation