• Journal of Semiconductors
  • Vol. 46, Issue 4, 041101 (2025)
Xin Gu1, Wen-Long Fei1, Bao-Quan Sun1, Ya-Kun Wang1,*, and Liang-Sheng Liao1,2,**
Author Affiliations
  • 1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
  • 2Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa 999078, China
  • show less
    DOI: 10.1088/1674-4926/24100016 Cite this Article
    Xin Gu, Wen-Long Fei, Bao-Quan Sun, Ya-Kun Wang, Liang-Sheng Liao. Wide-bandgap and heavy-metal-free quantum dots for blue light-emitting diodes[J]. Journal of Semiconductors, 2025, 46(4): 041101 Copy Citation Text show less
    References

    [1] J M Pietryga, Y S Park, J Lim et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev, 116, 10513(2016).

    [2] W L Fei, S N Li, J C Xie et al. X-type ligands effect on the operational stability of heavy-metal-free quantum dot light-emitting diodes. Nano Lett, 24, 14066(2024).

    [3] A Q Wang, H B Shen, S P Zang et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale, 7, 2951(2015).

    [4] S N Shtykov, T Y Rusanova. Nanomaterials and nanotechnologies in chemical and biochemical sensors: Capabilities and applications. Russ J Gen Chem, 78, 2521(2008).

    [5] C H M Chuang, P R Brown, V Bulović et al. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater, 13, 796(2014).

    [6] Y J Chen, J Herrnsdorf, B Guilhabert et al. Laser action in a surface-structured free-standing membrane based on a π-conjugated polymer-composite. Org Electron, 12, 62(2011).

    [7] H Y Wei, Q Wei, F Fang et al. Blue lasing from heavy-metal-free colloidal quantum dots. Laser Photonics Rev, 17, 2200557(2023).

    [8] H R Jia, F Z Wang, Z A Tan. Material and device engineering for high-performance blue quantum dot light-emitting diodes. Nanoscale, 12, 13186(2020).

    [9] J L Pan, Y J Yu, Y K Wang et al. Lanthanide ion-doped perovskite nanocrystals in electroluminescent device. Adv Funct Mater, 34, 2401327(2024).

    [10] H H Li, Y K Wang, L S Liao. Near-infrared luminescent materials incorporating rare earth/transition metal ions: From materials to applications. Adv Mater, 36, 2403076(2024).

    [11] J L Pan, W S Shen, S N Li et al. Polarity-mediated antisolvent control enables efficient lanthanide-based near-infrared perovskite LEDs. Nano Lett, 24, 2765(2024).

    [12] H W Duan, F Zhao, S N Li et al. Bi-ligand synergy enables threshold low voltage and bandgap stable pure-red mix-halide perovskite LEDs. Adv Funct Mater, 34, 2310697(2024).

    [13] Y K Wang, H Y Wan, S Teale et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature, 629, 586(2024).

    [14] J Y Zhao, L X Chen, D Z Li et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat Commun, 12, 4603(2021).

    [15] X L Dai, Y Z Deng, X G Peng et al. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv Mater, 29, 1607022(2017).

    [16] Z W Yang, M Y Gao, W J Wu et al. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater Today, 24, 69(2019).

    [17] J F Zhang, L Wang, X Y Zhang et al. Blue light-emitting diodes based on halide perovskites: Recent advances and strategies. Mater Today, 51, 222(2021).

    [18] H Y Li, Y Y Bian, W J Zhang et al. High performance InP-based quantum dot light-emitting diodes via the suppression of field-enhanced electron delocalization. Adv Funct Mater, 32, 2204529(2022).

    [19] W C Chao, T H Chiang, Y C Liu et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun Mater, 2, 96(2021).

    [20] G D Mei, Y Z Tan, J Y Sun et al. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes. Appl Phys Lett, 120, 091101(2022).

    [21] D Battaglia, X G Peng. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett, 2, 1027(2002).

    [22] L H Qu, X G Peng. Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc, 124, 2049(2002).

    [23] Q Q Wu, X W Gong, D W Zhao et al. Efficient tandem quantum-dot LEDs enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Adv Mater, 34, 2108150(2022).

    [24] S N Li, J L Pan, Y J Yu et al. Advances in solution-processed blue quantum dot light-emitting diodes. Nanomaterials, 13, 1695(2023).

    [25] C H Qiu, W Melton, M W Leksono et al. Photocurrent decay in n-type GaN thin films. Appl Phys Lett, 69, 1282(1996).

    [26] H Morkoc, S Strite, G B Gao et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J Appl Phys, 76, 1363(1994).

    [27] L C Schmidt, A Pertegás, S González-Carrero et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc, 136, 850(2014).

    [28] Z K Tan, R S Moghaddam, M L Lai et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 9, 687(2014).

    [29] L Brus. Electronic wave-functions in semiconductor clusters: Experiment and theory. J Phys Chem, 90, 2555(1986).

    [30] X B Tang, F Q Yang. Quantum dots: Synthesis, characterization, and applications. Handbook of Energy Materials. Singapore: Springer Nature Singapore, 1(2022).

    [31] A P Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933(1996).

    [32] Z N Chen, H T Li, C X Yuan et al. Color revolution: Prospects and challenges of quantum-dot light-emitting diode display technologies. Small Meth, 8, 2300359(2024).

    [33] E Jang, H Jang. Review: Quantum dot light-emitting diodes. Chem Rev, 123, 4663(2023).

    [34] A I Ekimov, A L Efros, A A Onushchenko. Quantum size effect in semiconductor microcrystals. Solid State Commun, 56, 921(1985).

    [35] A I Ekimov, A A Onushchenko. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett, 118, S15(2023).

    [36] A I Ekimov, A A Onushchenko, V A Tsekhomskii. Exciton absorption by CuCl crystals in a glassy matrix. Fiz Khim Stekla, 6, 511(1980).

    [37] A Efros, A Efros. Interband absorption of light in a semiconductor sphere. SPIE Milest Ser, 180, 71(2005).

    [38] R Rossetti, S Nakahara, L E Brus. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys, 79, 1086(1983).

    [39] L E Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys, 80, 4403(1984).

    [40] A L Efros, L E Brus. Nanocrystal quantum dots: From discovery to modern development. ACS Nano, 15, 6192(2021).

    [41] S Dhawan, T Dhawan, A G Vedeshwar. Growth of Nb2O5 quantum dots by physical vapor deposition. Mater Lett, 126, 32(2014).

    [42] N Bart, C Dangel, P Zajac et al. Wafer-scale epitaxial modulation of quantum dot density. Nat Commun, 13, 1633(2022).

    [43] C E Reilly, S Keller, S Nakamura et al. Metalorganic chemical vapor deposition of InN quantum dots and nanostructures. Light Sci Appl, 10, 150(2021).

    [44] M Shariat, M Karimipour, M Molaei. Synthesis of CdS quantum dots using direct plasma injection in liquid phase. Plasma Chem Plasma Process, 37, 1133(2017).

    [45] C B Murray, D J Norris, M G Bawendi. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 115, 8706(1993).

    [46] S S Ayyaril, A Shanableh, S Bhattacharjee et al. Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results Eng, 18, 101094(2023).

    [47] M I Sohail, A A Waris, M A Ayub et al. Environmental application of nanomaterials: A promise to sustainable future. Comprehensive Analytical Chemistry. Amsterdam: Elsevier, 1(2019).

    [48] S Y Joe, B Yoon, D Shin et al. Time-resolved mechanism of positive aging in InP quantum-dot light-emitting diodes. ACS Appl Mater Interfaces, 16, 46486(2024).

    [49] T Kim, K H Kim, S Kim et al. Efficient and stable blue quantum dot light-emitting diode. Nature, 586, 385(2020).

    [50] F Yuan, Y K Wang, G Sharma et al. Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nat Photonics, 14, 171(2019).

    [51] S N Li, F C Kong, Y J Yu et al. Electroluminescence from GaN-based quantum dots. Adv Optical Mater, 12, 2301427(2024).

    [52] Y Z Sun, Y B Jiang, X W Sun et al. Beyond OLED: Efficient quantum dot light-emitting diodes for display and lighting application. Chem Rec, 19, 1729(2019).

    [53] V L Colvin, M C Schlamp, A P Alivisatos. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370, 354(1994).

    [54] B O Dabbousi, M G Bawendi, O Onitsuka et al. Electroluminescence from CdSe quantum-dot/polymer composites. Appl Phys Lett, 66, 1316(1995).

    [55] M C Schlamp, X G Peng, A P Alivisatos. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. J Appl Phys, 82, 5837(1997).

    [56] S Coe, W K Woo, M Bawendi et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 420, 800(2002).

    [57] F P García de Arquer, D V Talapin, V I Klimov et al. Semiconductor quantum dots: Technological progress and future challenges. Science, 373, eaaz8541(2021).

    [58] P O Anikeeva, J E Halpert, M G Bawendi et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett, 9, 2532(2009).

    [59] S E Yalcin, B Q Yang, J A Labastide et al. Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indium tin oxide substrates. J Phys Chem C, 116, 15847(2012).

    [60] N H Song, H M Zhu, Z Liu et al. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy. ACS Nano, 7, 1599(2013).

    [61] J W Stouwdam, R A J Janssen. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J Mater Chem, 18, 1889(2008).

    [62] K S Cho, E K Lee, W J Joo et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat Photonics, 3, 341(2009).

    [63] H Y Kim, Y J Park, J Kim et al. Transparent InP quantum dot light-emitting diodes with ZrO2 electron transport layer and indium zinc oxide top electrode. Adv Funct Mater, 26, 3454(2016).

    [64] X L Dai, Z X Zhang, Y Z Jin et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515, 96(2014).

    [65] Z X Zhang, Y X Ye, C D Pu et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv Mater, 30, 1801387(2018).

    [66] H B Shen, Q Gao, Y B Zhang et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics, 13, 192(2019).

    [67] V K Lamer, R H Dinegar. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 72, 4847(1950).

    [68] X Z Deng, F J Zhang, Y Zhang et al. Heavy-metal-free blue-emitting ZnSe(Te) quantum dots: Synthesis and light-emitting applications. J Mater Chem C, 11, 14495(2023).

    [69] S G Kwon, T Hyeon. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small, 7, 2685(2011).

    [70] M A Hines, P Guyot-Sionnest. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B, 102, 3655(1998).

    [71] P Reiss, G Quemard, S Carayon et al. Luminescent ZnSe nanocrystals of high color purity. Mater Chem Phys, 84, 10(2004).

    [72] M Banski, M Afzaal, M A Malik et al. Special role for zinc stearate and octadecene in the synthesis of luminescent ZnSe nanocrystals. Chem Mater, 27, 3797(2015).

    [73] Y Liu, Y Tang, Y Ning et al. "One-pot" synthesis and shape control of ZnSe semiconductor nanocrystals in liquid paraffin. J Mater Chem, 20, 4451(2010).

    [74] H S Chen, B Lo, J Y Hwang et al. Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J Phys Chem B, 108, 19566(2004).

    [75] C Ippen, T Greco, Y Kim et al. ZnSe/ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability. Org Electron, 15, 126(2014).

    [76] O I Micic, J R Sprague, C J Curtis et al. Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. J Phys Chem, 99, 7754(1995).

    [77] D Yoo, M J Choi. Asymmetric metal-carboxylate complexes for synthesis of InGaP alloyed quantum dots with blue emission. ACS Nano, 18, 16051(2024).

    [78] P Reiss, M Carrière, C Lincheneau et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem Rev, 116, 10731(2016).

    [79] Y J Lee, S Kim, J Lee et al. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv Mater, 36, 2311719(2024).

    [80] Q Peng, Y J Dong, Z X Deng et al. Low-temperature elemental-direct-reaction route to Ⅱ−Ⅵ semiconductor nanocrystalline ZnSe and CdSe. Inorg Chem, 40, 3840(2001).

    [81] J Zhang, Q H Chen, W L Zhang et al. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission. Appl Surf Sci, 351, 655(2015).

    [82] D Yao, Y Liu, J Li et al. Advances in green colloidal synthesis of metal selenide and telluride quantum dots. Chin Chemical Lett, 30, 277(2019).

    [83] Z W Long, M R Liu, X G Wu et al. A reactivity-controlled epitaxial growth strategy for synthesizing large nanocrystals. Nat Synth, 2, 296(2023).

    [84] M Gao, H W Yang, H B Shen et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett, 21, 7252(2021).

    [85] Z W Yang, Q Q Wu, X C Zhou et al. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale, 13, 4562(2021).

    [86] S Park, C Son, S Kang et al. Development of highly efficient blue-emitting ZnSexTe1−x/ZnSe/ZnS quantum dots and their electroluminescence application. J Ind Eng Chem, 88, 348(2020).

    [87] Y H Bi, S Cao, P Yu et al. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small, 19, 2303247(2023).

    [88] M Imran, W Paritmongkol, H A Mills et al. Molecular-additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv Mater, 35, 2303528(2023).

    [89] Y H Kim, S Y Yoon, H Yang. Blue-emissive ZnSeTe quantum dots and their electroluminescent devices. J Phys Chem Lett, 15, 2142(2024).

    [90] L J He, S Cao, Q Y Li et al. Achieving near-unity quantum yield in blue ZnSeTe quantum dots through NH4F molecular-assisted synthesis for highly efficient light-emitting diodes. Chem Eng J, 489, 151347(2024).

    [91] E P Jang, C Y Han, S W Lim et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl Mater Interfaces, 11, 46062(2019).

    [92] S H Lee, S W Song, S Y Yoon et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem Eng J, 429, 132464(2022).

    [93] C Y Xiang, W Koo, S Chen et al. Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Appl Phys Lett, 101, 053303(2012).

    [94] W Y Ji, P T Jing, Y Fan et al. Cadmium-free quantum dot light emitting devices: Energy-transfer realizing pure blue emission. Opt Lett, 38, 7(2013).

    [95] C Y Han, S H Lee, S W Song et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett, 5, 1568(2020).

    [96] L Li, P Reiss. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J Am Chem Soc, 130, 11588(2008).

    [97] A Nematpour, M Nikoufard. Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods. J Adv Res, 10, 15(2018).

    [98] D Yang, D K Wang, X Fang et al. Research progress in surface modification engineering and application of PbSe quantum dots. Laser Optoelectron Prog, 60, 1500004(2023).

    [99] R X Bai, J H Yang, D H Wei et al. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Phys Sin, 69, 184211(2020).

    [100] J H Jo, D Y Jo, S W Choi et al. Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: Effects of double shelling scheme and Ga treatment. Adv Optical Mater, 9, 2100427(2021).

    [101] H Zhang, N Hu, Z P Zeng et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv Optical Mater, 7, 1801602(2019).

    [102] J Park, Y H Won, Y Han et al. Tuning hot carrier dynamics of InP/ZnSe/ZnS quantum dots by shell morphology control. Small, 18, 2105492(2022).

    [103] O I Mićić, C J Curtis, K M Jones et al. Synthesis and characterization of InP quantum dots. J Phys Chem, 98, 4966(1994).

    [104] A A Guzelian, J E B Katari, A V Kadavanich et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem, 100, 7212(1996).

    [105] O I Mićić, H M Cheong, H Fu et al. Size-dependent spectroscopy of InP quantum dots. J Phys Chem B, 101, 4904(1997).

    [106] O I Mićić, S P Ahrenkiel, A J Nozik. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films. Appl Phys Lett, 78, 4022(2001).

    [107] D V Talapin, A L Rogach, I Mekis et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids Surf A Physicochem Eng Aspects, 202, 145(2002).

    [108] E Jang, Y Kim, Y H Won et al. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays. ACS Energy Lett, 5, 1316(2020).

    [109] Z J Cui, D Yang, S T Qin et al. Advances, challenges, and perspectives for heavy-metal-free blue-emitting indium phosphide quantum dot light-emitting diodes. Adv Optical Mater, 11, 2202036(2023).

    [110] O I Mićić, B B Smith, A J Nozik. Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J Phys Chem B, 104, 12149(2000).

    [111] D Hahm, J H Chang, B G Jeong et al. Design principle for bright, robust, and color-pure InP/ZnSexS1−x/ZnS heterostructures. Chem Mater, 31, 3476(2019).

    [112] E Ryu, S Kim, E Jang et al. Step-wise synthesis of InP/ZnS core-shell quantum dots and the role of zinc acetate. Chem Mater, 21, 573(2009).

    [113] K Lim, H S Jang, K Woo. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth. Nanotechnology, 23, 485609(2012).

    [114] S Haubold, M Haase, A Kornowski et al. Strongly luminescent InP/ZnS core-shell nanoparticles. Chemphyschem, 2, 331(2001).

    [115] J Lim, W K Bae, D G Lee et al. InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability. Chem Mater, 23, 4459(2011).

    [116] S Kim, T Kim, M Kang et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J Am Chem Soc, 134, 3804(2012).

    [117] J P Park, J J Lee, S W Kim. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci Rep, 6, 30094(2016).

    [118] R G Xie, X G Peng. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J Am Chem Soc, 131, 10645(2009).

    [119] Z L Zhang, D Liu, D Z Li et al. Dual emissive Cu: InP/ZnS/InP/ZnS nanocrystals: Single-source "greener" emitters with flexibly tunable emission from visible to near-infrared and their application in white light-emitting diodes. Chem Mater, 27, 1405(2015).

    [120] F Pietra, N Kirkwood, L De Trizio et al. Ga for Zn cation exchange allows for highly luminescent and photostable InZnP-based quantum dots. Chem Mater, 29, 5192(2017).

    [121] S L Mei, X Wei, D Yang et al. Color-tunable optical properties of cadmium-free transition metal ions doped InP/ZnS quantum dots. J Lumin, 212, 264(2019).

    [122] K D Wegner, S Pouget, W L Ling et al. Gallium-a versatile element for tuning the photoluminescence properties of InP quantum dots. Chem Commun, 55, 1663(2019).

    [123] X Wei, S L Mei, B B Yang et al. Optical and morphological properties of single-phased and dual-emissive InP/ZnS quantum dots via transition metallic and inorganic ions. Langmuir, 36, 10244(2020).

    [124] H Liu, G L Shang, C Ren et al. Photophysical properties of Mn-doped InP/ZnS nanocrystals. J Phys Chem C, 125, 21748(2021).

    [125] K E Hughes, J L Stein, M R Friedfeld et al. Effects of surface chemistry on the photophysics of colloidal InP nanocrystals. ACS Nano, 13, 14198(2019).

    [126] W Shen, H Y Tang, X L Yang et al. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. J Mater Chem C, 5, 8243(2017).

    [127] H Zhang, X Y Ma, Q L Lin et al. High-brightness blue InP quantum dot-based electroluminescent devices: The role of shell thickness. J Phys Chem Lett, 11, 960(2020).

    [128] W D Zhang, S H Ding, W D Zhuang et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv Funct Mater, 30, 2005303(2020).

    [129] W D Zhang, Y Z Tan, X J Duan et al. High quantum yield blue InP/ZnS/ZnS quantum dots based on bromine passivation for efficient blue light-emitting diodes. Adv Optical Mater, 10, 2200685(2022).

    [130] K H Kim, J H Jo, D Y Jo et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem Mater, 32, 3537(2020).

    [131] X Y Xu, R Ray, Y L Gu et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 126, 12736(2004).

    [132] F L Yuan, Z B Wang, X H Li et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater, 36, 2312060(2024).

    [133] T Y Zhang, X Wang, Z Y Wu et al. Highly stable and bright blue light-emitting diodes based on carbon dots with a chemically inert surface. Nanoscale Adv, 3, 6949(2021).

    [134] Y L An, C Liu, Y Li et al. Preparation of multicolour solid fluorescent carbon dots for light-emitting diodes using phenylethylamine as a co-carbonization agent. Int J Mol Sci, 23, 11071(2022).

    [135] D Y Zhang, J Y Wang, J X Yin et al. Bright blue light-emitting diodes based on well-modified carbon dots by designing co-host systems to balance carriers’ injection. Adv Optical Mater, 11, 2300075(2023).

    [136] Y C Choi, H Kim, C Lee et al. Blue emission of α-GaN colloidal quantum dots via Zn doping. Chem Mater, 31, 5370(2019).

    [137] Y Xie, Y Qian, W Wang et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science, 272, 1926(1996).

    [138] K Dimos, L Jankovič, I B Koutselas et al. Low-temperature synthesis and characterization of gallium nitride quantum dots in ordered mesoporous silica. J Phys Chem C, 116, 1185(2012).

    Xin Gu, Wen-Long Fei, Bao-Quan Sun, Ya-Kun Wang, Liang-Sheng Liao. Wide-bandgap and heavy-metal-free quantum dots for blue light-emitting diodes[J]. Journal of Semiconductors, 2025, 46(4): 041101
    Download Citation