• Journal of Semiconductors
  • Vol. 46, Issue 4, 041101 (2025)
Xin Gu1, Wen-Long Fei1, Bao-Quan Sun1, Ya-Kun Wang1,*, and Liang-Sheng Liao1,2,**
Author Affiliations
  • 1Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
  • 2Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau SAR, Taipa 999078, China
  • show less
    DOI: 10.1088/1674-4926/24100016 Cite this Article
    Xin Gu, Wen-Long Fei, Bao-Quan Sun, Ya-Kun Wang, Liang-Sheng Liao. Wide-bandgap and heavy-metal-free quantum dots for blue light-emitting diodes[J]. Journal of Semiconductors, 2025, 46(4): 041101 Copy Citation Text show less
    (Color online) (a) Schematic diagram of the QSE. (b) Photoluminescence (PL) spectras of QDs with various sizes[32]. Copyright 2023, Wiley-VCH. (c) QDs solutions of different colors[33]. Copyright 2023, American Chemical Society. (d) Reported spectral ranges of emission for different semiconductor nanocrystals (NCs).
    Fig. 1. (Color online) (a) Schematic diagram of the QSE. (b) Photoluminescence (PL) spectras of QDs with various sizes[32]. Copyright 2023, Wiley-VCH. (c) QDs solutions of different colors[33]. Copyright 2023, American Chemical Society. (d) Reported spectral ranges of emission for different semiconductor nanocrystals (NCs).
    (Color online) (a) Schematic illustration of the synthetic apparatus for hot-injection mode[82]. Copyright 2018, Elsevier B. V. (b) Depiction of the monodisperse NCs formation process. Stage Ⅰ: precursor reaction; Stage Ⅱ: nucleation; Stage Ⅲ: growth[83]. Copyright 2023, Nature Publishing Group. (c) STEM images showing the progression of ZnSe(Te)/ZnSe C/S (5, 10 mL) and ZnSe(Te)/ZnSe/ZnS core/shell/shell (C/S/S) structures (scale bar: 20 nm) (inset: high-resolution STEM images, scale bar: 5 mm, with corresponding PLQY for each set of QDs)[79]. Copyright 2024, Wiley-VCH. (d) TEM images of ZnSe/ZnS QDs after further Se precursor addition, expanding ZnSe cores to achieve the desired emission wavelength[75]. Copyright 2013, Elsevier B. V. (e) Schematic diagram of the synthesis process of InP/GaP C/S QDs and the synthesis of InGaP alloy QDs[77]. Copyright 2024, American Chemical Society.
    Fig. 2. (Color online) (a) Schematic illustration of the synthetic apparatus for hot-injection mode[82]. Copyright 2018, Elsevier B. V. (b) Depiction of the monodisperse NCs formation process. Stage Ⅰ: precursor reaction; Stage Ⅱ: nucleation; Stage Ⅲ: growth[83]. Copyright 2023, Nature Publishing Group. (c) STEM images showing the progression of ZnSe(Te)/ZnSe C/S (5, 10 mL) and ZnSe(Te)/ZnSe/ZnS core/shell/shell (C/S/S) structures (scale bar: 20 nm) (inset: high-resolution STEM images, scale bar: 5 mm, with corresponding PLQY for each set of QDs)[79]. Copyright 2024, Wiley-VCH. (d) TEM images of ZnSe/ZnS QDs after further Se precursor addition, expanding ZnSe cores to achieve the desired emission wavelength[75]. Copyright 2013, Elsevier B. V. (e) Schematic diagram of the synthesis process of InP/GaP C/S QDs and the synthesis of InGaP alloy QDs[77]. Copyright 2024, American Chemical Society.
    (Color online) (a) Progression of absorption (cyan) and emission (orange) spectra during a typical synthesis of B-QDs, with corresponding PL quantum yields indicated[84]; Copyright 2021, American Chemical Society. (b) Diagram of the ligand exchange process using liquid-phase ZnCl2 (ZnCl2(l)) followed by further exchange via film-washing (ZnCl2(f))[49]. Copyright 2020, Nature Publishing Group. (c) Illustrations of the synthesis process for ZnSe(Te) (core), ZnSe(Te)/ZnSe C/S, and ZnSe(Te)/ZnSe/ZnS C/S/S QDs, along with associated TEM images. The atomic ratios determined via ICP-AES are as follows: core (Zn : Te : Se = 0.571 : 0.027 : 0.4), C/S (Zn : Te : Se = 0.521 : 0.002 : 0.476), C/S/S (Zn : Te : Se : S = 0.528 : 0.001 : 0.255 : 0.215)[49]. Copyright 2020, Nature Publishing Group. (d) Representation of heterostructures showing details of shell thickness[91]. Copyright 2019, American Chemical Society. (e) Normalized PL spectra of ZnSe(Te)/ZnSe/ZnS C/S/S QDs with varying ZnSe inner shell thicknesses (thin, medium, thick)[92]. Copyright 2022, Elsevier B. V. (f) Energy band structure for a blue ZnSe(Te)/ZnSe/ZnSeS/ZnS multilayer QLEDs[95]. Copyright 2020, American Chemical Society.
    Fig. 3. (Color online) (a) Progression of absorption (cyan) and emission (orange) spectra during a typical synthesis of B-QDs, with corresponding PL quantum yields indicated[84]; Copyright 2021, American Chemical Society. (b) Diagram of the ligand exchange process using liquid-phase ZnCl2 (ZnCl2(l)) followed by further exchange via film-washing (ZnCl2(f))[49]. Copyright 2020, Nature Publishing Group. (c) Illustrations of the synthesis process for ZnSe(Te) (core), ZnSe(Te)/ZnSe C/S, and ZnSe(Te)/ZnSe/ZnS C/S/S QDs, along with associated TEM images. The atomic ratios determined via ICP-AES are as follows: core (Zn : Te : Se = 0.571 : 0.027 : 0.4), C/S (Zn : Te : Se = 0.521 : 0.002 : 0.476), C/S/S (Zn : Te : Se : S = 0.528 : 0.001 : 0.255 : 0.215)[49]. Copyright 2020, Nature Publishing Group. (d) Representation of heterostructures showing details of shell thickness[91]. Copyright 2019, American Chemical Society. (e) Normalized PL spectra of ZnSe(Te)/ZnSe/ZnS C/S/S QDs with varying ZnSe inner shell thicknesses (thin, medium, thick)[92]. Copyright 2022, Elsevier B. V. (f) Energy band structure for a blue ZnSe(Te)/ZnSe/ZnSeS/ZnS multilayer QLEDs[95]. Copyright 2020, American Chemical Society.
    (Color online) (a) Scheme of the synthesis process for InP/ZnS/ZnS QDs[129]. Copyright 2022, Elsevier B. V. (b) UV−Vis absorption and PL emission spectra of InP/ZnS QDs at varying P/In ratios, along with UV−Vis absorption, PL emission spectra, and time-resolved fluorescence spectroscopy (TRPL) decays for QDs with different P/In and I/In ratios[126]. Copyright 2017, Royal Society of Chemistry. (c) Energy level diagrams for bulk InP, GaP, and ZnS, as well as their corresponding lattice mismatches[127]. Copyright 2020, American Chemical Society. (d) EQE−J characteristics of QLEDs incorporating InP/ZnS/ZnS-DDT QDs versus InP/ZnS/ZnS-OT QDs[129]. Copyright 2022, Elsevier B. V. (e) Schematic illustration of the cation-exchange process from In3+ to Ga3+ for InGaP core formation, followed by ZnSeS/ZnS double-shell growth[130]. Copyright 2020, American Chemical Society.
    Fig. 4. (Color online) (a) Scheme of the synthesis process for InP/ZnS/ZnS QDs[129]. Copyright 2022, Elsevier B. V. (b) UV−Vis absorption and PL emission spectra of InP/ZnS QDs at varying P/In ratios, along with UV−Vis absorption, PL emission spectra, and time-resolved fluorescence spectroscopy (TRPL) decays for QDs with different P/In and I/In ratios[126]. Copyright 2017, Royal Society of Chemistry. (c) Energy level diagrams for bulk InP, GaP, and ZnS, as well as their corresponding lattice mismatches[127]. Copyright 2020, American Chemical Society. (d) EQE−J characteristics of QLEDs incorporating InP/ZnS/ZnS-DDT QDs versus InP/ZnS/ZnS-OT QDs[129]. Copyright 2022, Elsevier B. V. (e) Schematic illustration of the cation-exchange process from In3+ to Ga3+ for InGaP core formation, followed by ZnSeS/ZnS double-shell growth[130]. Copyright 2020, American Chemical Society.
    (Color online) (a) Schematic representation of the edge amination approach[50]. Copyright 2019, Nature Publishing Group. (b) PL spectra of HCP-DB-CDs with the color scale presented in arbitrary units[50]. Copyright 2019, Nature Publishing Group. (c) EQE−J curves for varying concentration HCP-DB-CDs LEDs[50]. Copyright 2019, Nature Publishing Group. (d) PL spectra of PVK, CDs, and PVK films blended with CDs at varying concentrations[135]. Copyright 2023, Wiley-VCH. (e) PL spectra of GaN CQDs excited at 280 nm[136]. Copyright 2019, American Chemical Society. (f) J−V characteristics of GaN: Zn QLEDs (inset: image of GaN: Zn QLEDs)[51]. Copyright 2023, Wiley-VCH. (g) EQE−J curve for QLEDs incorporating GaN: Zn QDs[51]. Copyright 2023, Wiley-VCH.
    Fig. 5. (Color online) (a) Schematic representation of the edge amination approach[50]. Copyright 2019, Nature Publishing Group. (b) PL spectra of HCP-DB-CDs with the color scale presented in arbitrary units[50]. Copyright 2019, Nature Publishing Group. (c) EQE−J curves for varying concentration HCP-DB-CDs LEDs[50]. Copyright 2019, Nature Publishing Group. (d) PL spectra of PVK, CDs, and PVK films blended with CDs at varying concentrations[135]. Copyright 2023, Wiley-VCH. (e) PL spectra of GaN CQDs excited at 280 nm[136]. Copyright 2019, American Chemical Society. (f) JV characteristics of GaN: Zn QLEDs (inset: image of GaN: Zn QLEDs)[51]. Copyright 2023, Wiley-VCH. (g) EQE−J curve for QLEDs incorporating GaN: Zn QDs[51]. Copyright 2023, Wiley-VCH.
    Xin Gu, Wen-Long Fei, Bao-Quan Sun, Ya-Kun Wang, Liang-Sheng Liao. Wide-bandgap and heavy-metal-free quantum dots for blue light-emitting diodes[J]. Journal of Semiconductors, 2025, 46(4): 041101
    Download Citation