• Photonics Research
  • Vol. 10, Issue 10, 2366 (2022)
Hanke Feng1、†, Ke Zhang1、†, Wenzhao Sun1, Yangming Ren2、3, Yiwen Zhang1, Wenfu Zhang2、3, and Cheng Wang1、*
Author Affiliations
  • 1Department of Electrical Engineering & State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.464650 Cite this Article Set citation alerts
    Hanke Feng, Ke Zhang, Wenzhao Sun, Yangming Ren, Yiwen Zhang, Wenfu Zhang, Cheng Wang. Ultra-high-linearity integrated lithium niobate electro-optic modulators[J]. Photonics Research, 2022, 10(10): 2366 Copy Citation Text show less
    References

    [1] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [2] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, M. Qi. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 4, 117-122(2010).

    [3] J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun., 6, 5957(2015).

    [4] B. J. Eggleton, C. G. Poulton, P. T. Rakich, M. J. Steel, G. Bahl. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [5] C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, K.-J. Boller. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [6] J. S. Fandiño, P. Muñoz, D. Doménech, J. Capmany. A monolithic integrated photonic microwave filter. Nat. Photonics, 11, 124-129(2017).

    [7] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, J. Yao. A fully reconfigurable photonic integrated signal processor. Nat. Photonics, 10, 190-195(2016).

    [8] V. J. Urick, K. J. Williams, J. D. McKinney. Fundamentals of Microwave Photonics(2015).

    [9] D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon., 13, 242-352(2021).

    [10] A. Karim, J. Devenport. Noise figure reduction in externally modulated analog fiber-optic links. IEEE Photon. Technol. Lett., 19, 312-314(2007).

    [11] P. A. Morton, J. B. Khurgin, M. J. Morton. All-optical linearized Mach-Zehnder modulator. Opt. Express, 29, 37302-37313(2021).

    [12] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, M. Loncar. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [13] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, M. Lončar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [14] Z. Gong, X. Liu, Y. Xu, H. X. Tang. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [15] Y. He, J. Ling, M. Li, Q. Lin. Perfect soliton crystals on demand. Laser Photon. Rev., 14, 1900339(2020).

    [16] R. Gao, N. Yao, J. Guan, L. Deng, J. Lin, M. Wang, L. Qiao, W. Fang, Y. Cheng. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).

    [17] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, M. Lončar. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [18] M. R. Escalé, D. Pohl, A. Sergeyev, R. Grange. Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides. Opt. Lett., 43, 1515-1518(2018).

    [19] Y. Hu, M. Yu, D. Zhu, N. Sinclair, A. Shams-Ansari, L. Shao, J. Holzgrafe, E. Puma, M. Zhang, M. Lončar. On-chip electro-optic frequency shifters and beam splitters. Nature, 599, 587-593(2021).

    [20] J.-Y. Chen, Z.-H. Ma, Y. M. Sua, Z. Li, C. Tang, Y.-P. Huang. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [21] J. Lu, J. B. Surya, X. Liu, A. W. Bruch, Z. Gong, Y. Xu, H. X. Tang. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [22] J.-X. Zhou, R.-H. Gao, J. Lin, M. Wang, W. Chu, W.-B. Li, D.-F. Yin, L. Deng, Z.-W. Fang, J.-H. Zhang. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [23] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [24] A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, S. Fathpour. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).

    [25] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [26] P. Kharel, C. Reimer, K. Luke, L. He, M. Zhang. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).

    [27] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [28] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [29] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express, 26, 23728-23739(2018).

    [30] X. Xie, J. Khurgin, J. Kang, F.-S. Chow. Linearized Mach-Zehnder intensity modulator. IEEE Photon. Technol. Lett., 15, 531-533(2003).

    [31] H. Tazawa, W. H. Steier. Bandwidth of linearized ring resonator assisted Mach-Zehnder modulator. IEEE Photon. Technol. Lett., 17, 1851-1853(2005).

    [32] J. Yang, F. Wang, X. Jiang, H. Qu, M. Wang, Y. Wang. Influence of loss on linearity of microring-assisted Mach-Zehnder modulator. Opt. Express, 12, 4178-4188(2004).

    [33] S. Chen, G. Zhou, L. Zhou, L. Lu, J. Chen. High-linearity Fano resonance modulator using a microring-assisted Mach–Zehnder structure. J. Lightwave Technol., 38, 3395-3403(2020).

    [34] C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, J. E. Bowers. Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon. Optica, 3, 1483-1488(2016).

    [35] J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, M. Lipson. Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer. Opt. Express, 21, 22549-22557(2013).

    [36] M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive. Opt. Express, 21, 3818-3825(2013).

    [37] A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, M. Hochberg. Linearity of silicon ring modulators for analog optical links. Opt. Express, 20, 13115-13122(2012).

    [38] C. Manolatou, M. Lipson. All-optical silicon modulators based on carrier injection by two-photon absorption. J. Lightwave Technol., 24, 1433-1439(2006).

    [39] D. A. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, C. Burrus. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett., 53, 2173-2176(1984).

    [40] Q. Zhang, H. Yu, L. Wang, P. Xia, Q. Cheng, Z. Fu, X. Wang, J. Yang. Silicon dual-series Mach–Zehnder modulator with high linearity. Opt. Lett., 44, 5655-5658(2019).

    [41] Q. Zhang, H. Yu, P. Xia, Z. Fu, X. Wang, J. Yang. High linearity silicon modulator capable of actively compensating input distortion. Opt. Lett., 45, 3785-3788(2020).

    [42] Q. Zhang, H. Yu, H. Jin, T. Qi, Y. Li, J. Yang, X. Jiang. Linearity comparison of silicon carrier-depletion-based single, dual-parallel, and dual-series Mach–Zehnder modulators. J. Lightwave Technol., 36, 3318-3331(2018).

    [43] K. Zhang, Z. Chen, H. Feng, W.-H. Wong, E. Y.-B. Pun, C. Wang. High-Q lithium niobate microring resonators using lift-off metallic masks. Chin. Opt. Lett., 19, 060010(2021).

    [44] L. Gu, L. Fang, H. Fang, J. Li, J. Zheng, J. Zhao, Q. Zhao, X. Gan. Fano resonance lineshapes in a waveguide-microring structure enabled by an air-hole. APL Photon., 5, 016108(2020).

    [45] C. Hu, A. Pan, T. Li, X. Wang, Y. Liu, S. Tao, C. Zeng, J. Xia. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express, 29, 5397-5406(2021).

    [46] P. Ying, H. Tan, J. Zhang, M. He, M. Xu, X. Liu, R. Ge, Y. Zhu, C. Liu, X. Cai. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt. Lett., 46, 1478-1481(2021).

    [47] L. He, M. Zhang, A. Shams-Ansari, R. Zhu, C. Wang, L. Marko. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Opt. Lett., 44, 2314-2317(2019).

    Hanke Feng, Ke Zhang, Wenzhao Sun, Yangming Ren, Yiwen Zhang, Wenfu Zhang, Cheng Wang. Ultra-high-linearity integrated lithium niobate electro-optic modulators[J]. Photonics Research, 2022, 10(10): 2366
    Download Citation