• Photonics Research
  • Vol. 9, Issue 4, 615 (2021)
Wei-Che Hsu, Erwen Li, Bokun Zhou, and Alan X. Wang*
Author Affiliations
  • School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, USA
  • show less
    DOI: 10.1364/PRJ.416656 Cite this Article Set citation alerts
    Wei-Che Hsu, Erwen Li, Bokun Zhou, Alan X. Wang. Characterization of field-effect mobility at optical frequency by microring resonators[J]. Photonics Research, 2021, 9(4): 615 Copy Citation Text show less
    References

    [1] C. T. Sah. Evolution of the MOS transistor-from conception to VLSI. Proc. IEEE, 76, 1280-1326(1988).

    [2] H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, M. Heyns. Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator. Microelectron. Eng., 86, 1554-1557(2009).

    [3] M. K. Kim, J. S. Lee. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater., 32, 1907826(2020).

    [4] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427, 615-618(2004).

    [5] W. Cai, J. S. White, M. L. Brongersma. Power-efficient electrooptic plasmonic modulators. Nano Lett., 9, 4403-4411(2009).

    [6] K. Debnath, D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronardi, M. K. Husain, K. Ibukuro, F. Y. Gardes, G. T. Reed, S. Saito. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photon. Res., 6, 373-379(2018).

    [7] M. Midrio, P. Galli, M. Romagnoli, L. C. Kimerling, J. Michel. Graphene-based optical phase modulation of waveguide transverse electric modes. Photon. Res., 2, A34-A40(2014).

    [8] J. H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, M. Takenaka. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [9] R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, V. J. Sorger. 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photon., 3, 126104(2018).

    [10] E. Feigenbaum, K. Diest, H. A. Atwater. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett., 10, 2111-2116(2010).

    [11] Q. Gao, E. Li, A. X. Wang. Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide. Photon. Res., 6, 277-281(2018).

    [12] E. Li, Q. Gao, S. Liverman, A. X. Wang. One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Opt. Lett., 43, 4429-4432(2018).

    [13] E. Li, B. A. Nia, B. Zhou, A. X. Wang. Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photon. Res., 7, 473-477(2019).

    [14] S. H. Mir, V. K. Yadav, J. K. Singh, J. K. Singh. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS Omega, 5, 14203-14211(2020).

    [15] S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, R. Bartolino. Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude-Lorentz model. Appl. Surf. Sci., 255, 7203-7211(2009).

    [16] J. Ederth, A. Hultåker, G. A. Niklasson, P. Heszler, A. R. Van Doorn, M. J. Jongerius, D. Burgard, C. G. Granqvist. Thin porous indium tin oxide nanoparticle films: effects of annealing in vacuum and air. Appl. Phys. A, 81, 1363-1368(2005).

    [17] S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, G. A. Keeler. Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide. IEEE Photon. J., 9, 2723299(2017).

    [18] B. Zhou, E. Li, Y. Bo, A. Wang. High-speed plasmonic-silicon modulator driven by epsilon-near-zero conductive oxide. J. Lightwave Technol., 38, 3338-3345(2020).

    [19] T. I. Kamins. Hall mobility in chemically deposited polycrystalline silicon. J. Appl. Phys., 42, 4357-4365(1971).

    [20] Y. Sago, H. Fujiwara. Mapping characterization of SnO2:F transparent conductive oxide layers by ellipsometry technique. Jpn. J. Appl. Phys., 51, 10NB01(2012).

    [21] Z. Ma, Z. Li, K. Liu, C. Ye, V. J. Sorger. Indium-tin-oxide for high-performance electro-optic modulation. Nanophotonics, 4, 198-213(2015).

    [22] K. I. Goto, T. H. Yu, J. Wu, C. H. Diaz, J. P. Colinge. Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett., 101, 073503(2012).

    [23] J. F. Wager, D. A. Keszler, R. E. Presley. Transparent Electronics(2008).

    [24] R. L. Huffman. ZnO-channel thin-film transistors: channel mobility. J. Appl. Phys., 95, 5813-5819(2004).

    [25] Y. Nitzan, M. Grinshpan, Y. Goldstein. Field-effect mobility in quantized accumulation layers on ZnO surfaces. Phys. Rev. B, 19, 4107-4115(1979).

    [26] C. J. Chiu, S. P. Chang, S. J. Chang. Transistor using Ta2O5 gate dielectric. IEEE Electron Device Lett., 31, 1245-1247(2010).

    [27] Y. Chen, D. Geng, M. Mativenga, H. Nam, J. Jang. High-speed pseudo-CMOS circuits using bulk accumulation a-IGZO TFTs. IEEE Electron Device Lett., 36, 153-155(2015).

    [28] Y. Shin, S. T. Kim, K. Kim, M. Y. Kim, S. Oh, J. K. Jeong. The mobility enhancement of indium gallium zinc oxide transistors via low-temperature crystallization using a tantalum catalytic layer. Sci. Rep., 7, 10885(2017).

    [29] J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, C. Ballif. Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films. Appl. Phys. Lett., 90, 142107(2007).

    [30] H. C. M. Knoops, B. W. H. van de Loo, S. Smit, M. V. Ponomarev, J.-W. Weber, K. Sharma, W. M. M. Kessels, M. Creatore. Optical modeling of plasma-deposited ZnO films: electron scattering at different length scales. J. Vac. Sci. Technol. A, 33, 021509(2015).

    [31] H. Fujiwara, M. Kondo. Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Sn studied by spectroscopic ellipsometry: analysis of free-carrier and band-edge absorption. Phys. Rev. B, 71, 075109(2005).

    [32] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264-3294(2013).

    [33] W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).

    [34] W. Shi, X. Wang, W. Zhang, H. Yun, C. Lin, L. Chrostowski, N. A. F. Jaeger. Grating-coupled silicon microring resonators. Appl. Phys. Lett., 100, 121118(2012).

    [35] J. Xie, L. Zhou, X. Sun, Z. Zou, L. Lu, H. Zhu, X. Li, J. Chen. Selective excitation of microring resonances using a pulley-coupling structure. Appl. Opt., 53, 878-884(2014).

    [36] I. Demirtzioglou, C. Lacava, K. R. H. Bottrill, D. J. Thomson, G. T. Reed, D. J. Richardson, P. Petropoulos. Frequency comb generation in a silicon ring resonator modulator. Opt. Express, 26, 790-796(2018).

    [37] X. Cheng, J. Hong, A. M. Spring, S. Yokoyama. Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film. Opt. Mater. Express, 7, 2182-2187(2017).

    [38] Q. Gao, E. Li, A. X. Wang. Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]. Opt. Mater. Express, 8, 2850-2862(2018).

    [39] E. Li, Q. Gao, R. T. Chen, A. X. Wang. Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume. Nano Lett., 18, 1075-1081(2018).

    [40] A. Zeumault, V. Subramanian. Improved technique for quantifying the bias-dependent mobility of metal-oxide thin-film transistors. IEEE Trans. Electron Devices, 62, 855-861(2015).

    [41] A. Zeumault, V. Subramanian. Mobility enhancement in solution-processed transparent conductive oxide TFTs due to electron donation from traps in high-k gate dielectrics. Adv. Funct. Mater., 26, 955-963(2016).

    CLP Journals

    [1] Jiaye Wu, Ze Tao Xie, Yanhua Sha, H. Y. Fu, Qian Li. Epsilon-near-zero photonics: infinite potentials[J]. Photonics Research, 2021, 9(8): 1616

    Wei-Che Hsu, Erwen Li, Bokun Zhou, Alan X. Wang. Characterization of field-effect mobility at optical frequency by microring resonators[J]. Photonics Research, 2021, 9(4): 615
    Download Citation