• Chinese Optics Letters
  • Vol. 19, Issue 7, 070601 (2021)
Zhe Zhang1、2, Yingying Wang1, Min Zhou2, Jun He2、*, Changrui Liao2, and Yiping Wang2
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
  • 2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.3788/COL202119.070601 Cite this Article Set citation alerts
    Zhe Zhang, Yingying Wang, Min Zhou, Jun He, Changrui Liao, Yiping Wang. Recent advance in hollow-core fiber high-temperature and high-pressure sensing technology [Invited][J]. Chinese Optics Letters, 2021, 19(7): 070601 Copy Citation Text show less
    References

    [1] G. B. Hocker. Fiber-optic sensing of pressure and temperature. Appl. Opt., 18, 1445(1979).

    [2] A. K. Sharma, R. Jha, B. D. Gupta. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J., 7, 1118(2007).

    [3] A. Leung, P. M. Shankar, R. Mutharasan. A review of fiber-optic biosensors. Sens. Actuat. B: Chem., 125, 688(2007).

    [4] M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, D. K. Bhattacharya. Fiber Bragg gratings in structural health monitoring—present status and applications. Sens. Actuat. A: Phys., 147, 150(2008).

    [5] S. J. Mihailov. Fiber Bragg grating sensors for harsh environments. Sensors, 12, 1898(2012).

    [6] J. Albert, L. Y. Shao, C. Caucheteur. Tilted fiber Bragg grating sensors. Laser Photon. Rev., 7, 83(2013).

    [7] X. J. Fan, J. F. Jiang, X. Z. Zhang, K. Liu, T. G. Liu. Investigation on temperature characteristics of weak fiber Bragg gratings in a wide range. Chin. Opt. Lett., 17, 120603(2019).

    [8] Y. M. Zhang, D. D. Rong, L. Q. Zhu, M. L. Dong, F. Luo. Regenerated fiber Bragg grating for fiber laser sensing at high temperatures. Chin. Opt. Lett., 16, 040606(2018).

    [9] C. W. Smelser, S. J. Mihailov, D. Grobnic. Formation of type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Opt. Express, 13, 5377(2005).

    [10] Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, P. X. Lu. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer. IEEE Photon. Technol. Lett., 22, 39(2009).

    [11] S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. E. Heidepriem, T. M. Monro. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Opt. Express, 24, 3714(2016).

    [12] C. Wang, J. C. Zhang, C. Z. Zhang, J. He, Y. C. Lin, W. Jin, C. R. Liao, Y. Wang, Y. P. Wang. Bragg gratings in suspended-core photonic microcells for high-temperature applications. J. Lightwave Technol., 36, 2920(2018).

    [13] J. He, Y. P. Wang, C. R. Liao, C. Wang, S. Liu, K. M. Yang, Y. Wang, X. C. Yuan, G. P. Wang, W. J. Zhang. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration. Sci. Rep., 6, 23379(2016).

    [14] S. Liu, L. Jin, W. Jin, D. N. Wang, C. R. Liao, Y. Wang. Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser. Opt. Express, 18, 5496(2010).

    [15] D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photon. Technol. Lett., 16, 2505(2004).

    [16] M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, H. Bartelt. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibers for high-temperature sensor applications. Meas. Sci. Technol., 20, 115301(2009).

    [17] T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, H. Bartelt. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express, 21, 4591(2013).

    [18] T. Habisreuther, T. Elsmann, Z. Pan, Z. Graf, R. Willsch, M. A. Schmidt. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Therm. Eng., 91, 860(2015).

    [19] S. Yang, D. Hu, A. B. Wang. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Opt. Lett., 42, 4219(2017).

    [20] C. Chen, X. Y. Zhang, Y. S. Yu, W. H. Wei, Q. Guo, L. Qin, Y. Q. Ning, L. J. Wang, H. B. Sun. Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing. J. Lightwave Technol., 36, 3302(2018).

    [21] X. Z. Xu, J. He, C. R. Liao, K. M. Yang, K. K. Guo, C. Li, Y. F. Zhang, Z. B. Ouyang, Y. P. Wang. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Opt. Lett., 43, 4562(2018).

    [22] X. W. Shu, Z. Lin, I. Bennion. Sensitivity characteristics of long-period fiber gratings. J. Lightwave Technol., 20, 255(2002).

    [23] Y. J. Rao, Z. L. Ran, X. Liao, H. Y. Deng. Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain. Opt. Express, 15, 14936(2007).

    [24] Y. J. Rao, Y. P. Wang, Z. L. Ran, T. Zhu. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightwave Technol., 21, 1320(2003).

    [25] G. Rego, O. Okhotnikov, E. Dianov, V. Sulimov. High-temperature stability of long-period fiber gratings produced using an electric arc. J. Lightwave Technol., 19, 1574(2001).

    [26] G. Rego. Arc-induced long-period fiber gratings. J. Sens., 2016, 3598634(2016).

    [27] G. Humbert, A. Malki. Characterizations at very high temperature of electric arc-induced long-period fiber gratings. Opt. Commun., 208, 329(2002).

    [28] L. Jiang, J. Yang, S. Wang, B. Li, M. Wang. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett., 36, 3753(2011).

    [29] N. Zhao, Q. J. Lin, W. X. Jing, Z. D. Jiang, Z. R. Wu, K. Yao, B. Tian, Z. K. Zhang, P. Shi. High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers. Sens. Actuat. A: Phys., 267, 491(2017).

    [30] A. A. Jasim, S. W. Harun, H. Arof, H. Ahmad. Inline microfiber Mach–Zehnder interferometer for high temperature sensing. IEEE Sens. J., 13, 626(2013).

    [31] Z. Zhang, C. R. Liao, J. Tang, Y. Wang, Z. Y. Bai, Z. Y. Li, K. K. Guo, M. Deng, S. Q. Cao, Y. P. Wang. Hollow-core-fiber-based interferometer for high temperature measurement. IEEE Photon. J., 9, 7101109(2017).

    [32] J. Zhang, H. Sun, Q. Z. Rong, X. G. Qiao. High-temperature sensor using a Fabry–Perot interferometer based on solid-core photonic crystal fiber. Chin. Opt. Lett., 10, 070607(2012).

    [33] P. Chen, X. W. Shu. Refractive-index-modified-dot Fabry–Perot fiber probe fabricated by femtosecond laser for high-temperature sensing. Opt. Express, 26, 5292(2018).

    [34] D. W. Duan, Y. J. Rao, W. Wen, J. Yao, D. Wu, L. Xu, T. Zhu. In-line all-fiber Fabry–Perot interferometer high temperature sensor formed by large lateral offset splicing. Electronics, 47, 401(2011).

    [35] Z. S. Chen, S. S. Xiong, S. C. Gao, H. Zhang, L. Wan, X. C. Huang, B. S. Huang, Y. H. Feng, W. P. Liu, Z. H. Li. High-temperature sensor based on Fabry–Perot interferometer in microfiber tip. Sensors, 18, C1(2018).

    [36] X. L. Tan, Y. F. Geng, X. J. Li, G. Rong, Z. Yin. High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry–Perot interferometer. Appl. Opt., 52, 8195(2013).

    [37] Z. Zhang, J. He, B. Du, F. C. Zhang, K. K. Guo, Y. P. Wang. Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers. Opt. Lett., 43, 6009(2018).

    [38] Z. Zhang, B. J. Xu, M. Zhou, W. J. Bao, X. Z. Xu, Y. P. Wang. Hollow-core fiber-tip interferometric high-temperature sensor operating at 1100°C. Micromachines, 12, 234(2021).

    [39] Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, K. Grattan. Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses. Opt. Express, 16, 21239(2008).

    [40] D. Grobnic, C. Smelser, S. Mihailov, R. Walker. Long-term thermal stability tests at 1000°C of silica fiber Bragg gratings made with ultrafast laser radiation. Meas. Sci. Technol., 17, 1009(2006).

    [41] U. Paek, C. Kurkjian. Calculation of cooling rate and induced stresses in drawing of optical fibers. J. Am. Ceram. Soc., 58, 330(1975).

    [42] D. Wissuchek, C. Ponader, J. Price. Analysis of residual stress in optical fiber. Proc. SPIE, 3848, 34(1999).

    [43] Y. H. Li, M. W. Yang, D. N. Wang, J. Lu, T. Sun, K. Grattan. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation. Opt. Express, 17, 19785(2008).

    [44] R. F. Cregan, B. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, D. C. Allan. Single-mode photonic bandgap guidance of light in air. Science, 285, 1537(1999).

    [45] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. St.J. Russell. Ultimate low loss of hollow-core photonic crystal fibers. Opt. Express, 13, 236(2005).

    [46] Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid. Low loss broadband transmission in hypocycloid-core kagome hollow-core photonic crystal fiber. Opt. Lett., 36, 669(2011).

    [47] , . Nested antiresonant nodeless hollow core fiber. Opt. Express, 22, 23807(2014).

    [48] Y. Fei, J. C. Knight. Negative curvature hollow core optical fiber. IEEE J. Sel. Top. Quantum Electron., 22, 4400610(2015).

    [49] S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang. Hollow-core conjoined-tube negative-curvature fiber with ultralow loss. Nat. Commun., 9, 2828(2018).

    [50] Y. Y. Wang, X. Peng, M. Alharbi, C. Fourcade Dutin, T. D. Bradley, F. Gérôme, Mielke Michael, Booth Timothy, F. Benabid. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression. Opt. Lett., 37, 3111(2012).

    [51] C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch. Low-loss hollow-core silica/air photonic bandgap fiber. Nature, 424, 657(2003).

    [52] F. Couny, F. Benabid, P. S. Light. Large-pitch Kagome-structured hollow-core photonic crystal fiber. Opt. Lett., 31, 3574(2006).

    [53] C. He, C. Zhou, Q. Zhou, S. Y. Xie, Y. Yao. Simultaneous measurement of strain and temperature using Fabry–Pérot interferometry and antiresonant mechanism in a hollow-core fiber. Chin. Opt. Lett., 19, 041201(2021).

    [54] F. Benabid, F. Couny, J. Knight, T. Birks, P. Russell. Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers. Nature, 434, 488(2005).

    [55] R. Thapa, K. Knabe, K. L. Corwin, B. R. Washburn. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells. Opt. Express, 14, 9576(2006).

    [56] C. J. Hensley, D. H. Broaddus, C. B. Schaf, A. L. Gaeta. Photonic band-gap fiber gas cell fabricated using femtosecond micromachining. Opt. Express, 15, 6690(2007).

    [57] G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. Russell, R. Low. Rydberg atoms in hollow-core photonic crystal fibers. Nat. Commun., 5, 4132(2014).

    [58] K. K. Chow, M. Short, S. Lam, A. Mcwilliams, H. Zeng. A Raman cell based on hollow core photonic crystal fiber for human breath analysis. Med. Phys., 41, 092701(2014).

    [59] P. S. Light, F. Couny, F. Benabid. Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber. Opt. Lett., 31, 2538(2006).

    [60] M. P. Buric, K. P. Chen, J. Falk, S. D. Woodruff. Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber. Appl. Opt., 47, 4255(2008).

    [61] L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. Macpherson, A. K. George, J. C. Knight. Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator. Opt. Express, 15, 11219(2007).

    [62] J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. Mcnaghten, A. M. Parkes, W. N. Macpherson. Towards practical gas sensing with micro-structured fibers. Meas. Sci. Technol., 20, 075301(2009).

    [63] I. Shavrin, S. Novotny, A. Shevchenko, H. Ludvigsen. Gas refractometry using a hollow-core photonic bandgap fiber in a Mach–Zehnder-type interferometer. Appl. Phys. Lett., 100, 051106(2012).

    [64] P. C. Zhao, H. L. Ho, W. Jin, S. C. Fan, S. F. Gao, Y. Y. Wang, P. Wang. Gas sensing with mode-phase-difference photothermal spectroscopy assisted by a long period grating in a dual-mode negative-curvature hollow-core optical fiber. Opt. Lett., 45, 5660(2020).

    [65] F. F. Chen, S. L. Jiang, W. Jin, H. H. Bao, H. L. Ho, C. Wang, S. F. Gao. Ethane detection with mid-infrared hollow-core fiber photothermal spectroscopy. Opt. Express, 28, 38115(2020).

    [66] W. Jin, H. F. Xuan, H. L. Ho. Sensing with hollow-core photonic bandgap fibers. Meas. Sci. Technol., 21, 094014(2010).

    [67] Y. Y. Huang, Y. Xu, A. Yariv. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett., 85, 5182(2004).

    [68] Z. B. Liu, X. He, D. N. Wang. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt. Lett., 36, 3024(2011).

    [69] C. Cordeiro, E. Santos, C. Cruz, C. Matos, D. S. Ferreiira. Lateral access to the holes of photonic crystal fibers—selective filling and sensing applications. Opt. Express, 14, 8403(2006).

    [70] S. T. Bauerschmidt, D. Novoa, B. M. Trabold, A. Abdolvand, P. Russell. Supercontinuum up-conversion via molecular modulation in gas-filled hollow-core PCF. Opt. Express, 22, 20566(2014).

    [71] A. Hoffmann, M. Zürch, C. Spielmann. Extremely nonlinear optics using shaped pulses spectrally broadened in an argon- or sulfur hexafluoride-filled, hollow-core fiber. Appl. Sci., 5, 1310(2015).

    [72] D. Yan, J. Popp, M. W. Pletz, T. Frosch. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers. ACS Photon., 4, 138(2017).

    [73] M. Gebhardt, T. Heuermann, R. Klas, C. Liu, J. Limpert. Bright, high-repetition-rate water window soft x-ray source enabled by nonlinear pulse self-compression in an antiresonant hollow-core fiber. Light: Sci. Appl., 10, 36(2021).

    [74] J. H. Wray, J. T. Neu. Refractive index of several glasses as a function of wavelength and temperature. J. Opt. Soc. Am., 59, 774(1969).

    [75] B. Kuhn, R. Schadrack. Thermal expansion of synthetic fused silica as a function of OH content and fictive temperature. J. Non-Crystall. Solids, 355, 323(2009).

    [76] M. Ferreira, L. Coelho, K. Schuster, J. Kobelke, L. Santos, O. Frazão. Fabry–Perot cavity based on a diaphragm-free hollow-core silica tube. Opt. Lett., 36, 4029(2011).

    [77] H. Bae, M. Yu. Miniature Fabry–Perot pressure sensor created by using UV-molding process with an optical fiber-based mold. Opt. Express, 20, 14573(2012).

    [78] W. H. Wang, N. Wu, Y. Tian, C. Niezrecki, X. W. Wang. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt. Express, 18, 9006(2010).

    [79] F. Xu, D. X. Ren, X. L. Shi, C. Li, W. W. Lu, L. Lu, L. Lu, B. L. Yu. High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm. Opt. Lett., 37, 133(2012).

    [80] J. Ma, J. Ju, L. Jin, W. Jin. A compact fiber-tip micro-cavity sensor for high-pressure measurement. IEEE Photon. Technol. Lett., 23, 1561(2011).

    [81] J. Ma, W. Jin, H. L. Ho, J. Y. Dai. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett., 37, 2493(2012).

    [82] J. C. Xu, X. W. Wang, K. L. Cooper, A. B. Wang. Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett., 30, 3269(2005).

    [83] Z. Zhang, C. R. Liao, J. Tang, Z. Y. Bai, K. K. Guo, M. X. Hou, J. He, Y. Wang, S. Liu, F. Zhang, Y. P. Wang. High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry–Perot interferometer. J. Lightwave Technol., 35, 4067(2017).

    [84] M. Deng, C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, M. Han. Refractive index measurement using photonic crystal fiber-based Fabry–Perot interferometer. Appl. Opt., 49, 1593(2010).

    [85] J. Tang, G. L. Yin, C. R. Liao, S. Liu, Z. Y. Li, X. Y. Zhong, Q. Wang, J. Zhao, K. M. Yang, Y. P. Wang. High-sensitivity gas pressure sensor based on Fabry–Perot interferometer with a side-opened channel in hollow-core photonic bandgap fiber. IEEE Photon. J., 7, 2489926(2015).

    [86] Y. C. Cao, W. Jin, F. Yang, H. L. Ho. Phase sensitivity of fundamental mode of hollow core photonic bandgap fiber to internal gas pressure. Opt. Express, 22, 13190(2014).

    [87] Z. Zhang, J. He, Q. Dong, Z. Y. Bai, C. R. Liao, Y. Wang, S. Liu, K. K. Guo, Y. P. Wang. Diaphragm-free gas-pressure sensor probe based on a hollow-core photonic bandgap fiber. Opt. Lett., 43, 3017(2018).

    [88] J. Ma. Miniature Fiber-Tip Fabry–Perot Interferometric Sensors for Pressure and Acoustic Detection(2014).

    [89] Y. Jiang. Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors. IEEE Photon. Technol. Lett., 20, 75(2008).

    [90] Y. Jiang, C. Tang. Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry–Perot interferometric sensors. Rev. Sci. Instrum., 79, 106105(2008).

    Data from CrossRef

    [1] Xinran Dong, Li Zeng, Dongkai Chu, Xiaoyan Sun. Highly Sensitive Dual Parameter Sensor Based on a Hybrid Structure with Multimode Interferometer and Fiber Bragg Grating Fabricated by Femtosecond Laser. Sensors, 21, 5938(2021).

    Zhe Zhang, Yingying Wang, Min Zhou, Jun He, Changrui Liao, Yiping Wang. Recent advance in hollow-core fiber high-temperature and high-pressure sensing technology [Invited][J]. Chinese Optics Letters, 2021, 19(7): 070601
    Download Citation