• Laser & Optoelectronics Progress
  • Vol. 51, Issue 11, 110008 (2014)
Zhang Libin* and Chen Shaowu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.110008 Cite this Article Set citation alerts
    Zhang Libin, Chen Shaowu. Theoretical Modeling of Kerr Resonators Based Optical Frequency Combs and Their Potential Applications as Multi-wavelength Sources[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110008 Copy Citation Text show less
    References

    [1] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity [J]. Phys Rev Lett, 2004, 93(8): 083904.

    [2] Del'Haye P, Schliesser A, Arcizet O, et al.. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217.

    [3] Wu Xuejian, Li Yan, Wei Haoyun, et al.. Femtosecond optical frequency combs for precision measurement applications [J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.

    [4] Zou Changling, Dong Chunhua, Cui Jinming, et al.. Whispering gallery mode optical microresonators: fundamentals and applications [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(11): 1155-1175.

    [5] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559.

    [6] Del'Haye P, Arcizet O, Schliesser A, et al.. Full stabilization of a microresonator-based optical frequency comb [J]. Phys Rev Lett, 2008, 101(5): 053903.

    [7] Foster M A, Levy J S, Kuzucu O, et al.. Silicon-based monolithic optical frequency comb source [J]. Opt Express, 2011, 19(15): 14233-14239.

    [8] Del′Haye P, Papp S B, Diddams S A. Hybrid electro-optically modulated microcombs [J]. Phys Rev Lett, 2012, 109(26): 263901.

    [9] Papp S B, Diddams S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb [J]. Phys Rev A, 2011, 84(5): 053833.

    [10] Ferdous F, Miao H, Leaird D E, et al.. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J]. Nat Photon, 2011, 5: 770-776.

    [11] Levy J S, Gondarenko A, Foster M A, et al.. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J]. Nat Photon, 2010, 4: 37-40.

    [12] Levy J S, Saha K, Okawachi Y, et al.. High-performance silicon-nitride-based multiple-wavelength source [J]. IEEE Photon Technol Lett, 2012, 24(16): 1375-1377.

    [13] Johnson A R, Okawachi Y, Lamont M R E, et al.. Microresonator-based comb generation without an external laser source [J]. Opt Express, 2014, 22(2): 1394-1401.

    [14] Godey C, Balakireva I, Coillet A, et al.. Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part I: Case of normal dispersion [J]. Phys Rev A, 2014, 89(6): 063814.

    [15] Balakireva I, Coillet A, Godey C, et al.. Stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs. Part II: Case of anomalous dispersion [J]. arXiv:1308.2542v1, 2013.

    [16] Coillet A, Chembo Y K. Routes to spatiotemporal chaos in Kerr optical frequency combs [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2014, 24(1): 013113.

    [17] Leo F, Coen S, Kockaert P, et al.. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer [J]. Nat Photon, 2010, 4: 471-476.

    [18] Herr T, Brasch V, Jost J D, et al.. Temporal solitons in optical microresonators [J]. Nat Photon, 2014, 8: 145-152.

    [19] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whisperinggallery-mode resonators [J]. Phys Rev A, 2010, 82(3): 033801.

    [20] Chembo Y K, Strekalov D V, Yu N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators [J]. Phys Rev Lett, 2010, 104(10): 103902.

    [21] Coen S, Randle H G, Sylvestre T, et al.. Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model [J]. Opt Lett, 2013, 38(1): 37-39.

    [22] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whisperinggallery-mode resonators [J]. Phys Rev A, 2013, 87(5): 053852.

    [23] Coillet A, Balakireva I, Henriet R, et al.. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators [J]. IEEE Photonics J, 2013, 5(4): 6100409.

    [24] Agrawal G P. Nonlinear Fiber Optics [M]. 3rd ed. Burlington: Academic Press, 2001.

    [25] Chen Haihuan, Chen Zilun, Zhou Xuanfeng, et al.. Numerical study of supercontinuum generation in photonic crystal fibers with two zero dispersion wavelengths [J]. Chinese J Lasers, 2012, 39(s2): s205002.

    [26] Zhang Can, Zhu Hongliang, Liang Song, et al.. Monolithically integrated 10-channel multi-wavelength light sources [J]. Chinese J Lasers, 2013, 40(12): 1202001.

    [27] Ma Li, Zhu Hongliang, Liang Song, et al.. DFB laser array monolithically integrated with MMI combiner and SOA [J]. J Optoelectronics·Laser, 2013, 24(3): 424-428.

    [28] Miao Xuefeng, Wang Tianshu, Zhou Xuefang, et al.. A tunable multiwavelength Brillouin-erbium fiber laser [J]. Chinese J Lasers, 2012, 39(6): 0602010.

    [29] Jiang Yufeng, Zhao Xin, Wang Jian, et al.. Robust and controllable generation of frequency combs in microresonators with selected sideband feedback [C]. Proceedings of the Optical Fiber Communication Conference, 2014.

    Zhang Libin, Chen Shaowu. Theoretical Modeling of Kerr Resonators Based Optical Frequency Combs and Their Potential Applications as Multi-wavelength Sources[J]. Laser & Optoelectronics Progress, 2014, 51(11): 110008
    Download Citation