• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20220082 (2022)
Yaoyuan Lei1、2, Qikai Chen1、2, Yitian Liu1、2, and Yaoguang Ma1、2
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • 2International Research Center for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.3788/IRLA20220082 Cite this Article
    Yaoyuan Lei, Qikai Chen, Yitian Liu, Yaoguang Ma. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220082 Copy Citation Text show less
    References

    [1] X Li, Y Huang, P Zhang, et al. Infrared imaging system and applications. Laser & Infrared, 44, 229-234(2014).

    [2] Y Pan, Y Zhao, F Zhang. IR fingerprint spectrum and its analyzing method. Modern Instruments, 1-13(2000).

    [3] F Neubrech, C Huck, K Weber, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chemical Reviews, 117, 5110-5145(2017).

    [4] X Yang, Z Sun, T Low, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Advanced Materials, 30, 1704896(2018).

    [5] H Zhang, J Wang, N Li. Surface-enhanced infrared absorption. Scientia Sinica Physica, Mechanica & Astronomica, 49, 124204(2019).

    [6] H L Wang, E M You, R Panneerselvam, et al. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light:Science & Applications, 10, 161(2021).

    [7] L Dong, X Yang, C Zhang, et al. Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Letters, 17, 5768-5774(2017).

    [8] D Yoo, D A Mohr, F Vidal-Codina, et al. High-contrast infrared absorption spectroscopy via mass-produced coaxial zero-mode resonators with sub-10 nm gaps. Nano Letters, 18, 1930-1936(2018).

    [9] A Hartstein, J R Kirtley, J C Tsang. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Physical Review Letters, 45, 201-204(1980).

    [10] N Li, H Yin, X Zhuo, et al. Infrared-responsive colloidal silver nanorods for surface-enhanced infrared absorption. Advanced Optical Materials, 6, 1800436(2018).

    [11] B Cerjan, X Yang, P Nordlander, et al. Asymmetric aluminum antennas for self-calibrating surface-enhanced infrared absorption spectroscopy. ACS Photonics, 3, 354-360(2016).

    [12] A Leitis, M L Tseng, A John-Herpin, et al. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Advanced Materials, 33, 2102232(2021).

    [13] D Rodrigo, O Limaj, D Janner, et al. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [14] C Wu, X Guo, H Hu, et al. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 68, 148103(2019).

    [15] L Kuhner, M Hentschel, U Zschieschang, et al. Nanoantenna-enhanced infrared spectroscopic chemical imaging. ACS Sensors, 2, 655-662(2017).

    [16] D Rodrigo, A Tittl, N Ait-Bouziad, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nature Communications, 9, 2160(2018).

    [17] Y Zhu, Z Li, Z Hao, et al. Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface. Light:Science & Applications, 7, 67(2018).

    [18] C V Hoang, M Oyama, O Saito, et al. Monitoring the presence of ionic mercury in environmental water by plasmon-enhanced infrared spectroscopy. Scientific Reports, 3, 1175(2013).

    [19] X Chong, Y Zhang, E Li, et al. Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sensors, 3, 230-238(2018).

    [20] H Hu, X Yang, X Guo, et al. Gas identification with graphene plasmons. Nature Communications, 10, 1131(2019).

    [21] H Zhou, X Hui, D Li, et al. Metal-organic framework-surface-enhanced infrared absorption platform enables simultaneous on-chip sensing of greenhouse gases. Advanced Science, 7, 2001173(2020).

    [22] J Fonollosa, R Rubio, S Hartwig, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B:Chemical, 132, 498-507(2008).

    [23] R Soref. Mid-infrared photonics in silicon and germanium. Nature Photonics, 4, 495-497(2010).

    [24] W Shen, M and Yu J Xue. Long wave infrared fast objective with wide field of view. Acta Photonica Sinica, 33, 460-463(2004).

    [25] L Zhang, L Chen, Y Fan, et al. Development of mid-infrared transmitting glasses window and applications. Acta Optica Sinica, 31, 296-304(2011).

    [26] B Tang, Z Wang, Y Fan, et al. Trends and status in mid-infrared glasses. Infrared and Laser Engineering, 37, 311-314(2008).

    [27] S Dai, H Chen, M Li, et al. Chalcogenide glasses and their infrared optical applications. Infrared and Laser Engineering, 41, 847-852(2012).

    [28] L Huang, Z Coppens, K Hallman, et al. Long wavelength infrared imaging under ambient thermal radiation via an all-silicon metalens. Optical Materials Express, 11, 2907-2914(2021).

    [29] S Zhang, M H Kim, F Aieta, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Optics Express, 24, 18024-18034(2016).

    [30] H Zuo, D Y Choi, X Gai, et al. High‐efficiency all‐dielectric metalenses for mid‐infrared imaging. Advanced Optical Materials, 5, 1700585(2017).

    [31] Q Fan, M Liu, C Yang, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 113, 201104(2018).

    [32] N Song, N Xu, D Shan, et al. Broadband achromatic metasurfaces for longwave infrared applications. Nanomaterials, 11, 2760(2021).

    [33] C Yan, X Li, M Pu, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces. Applied Physics Letters, 114, 161904(2019).

    [34] G Cao, H-X Xu, L-M Zhou, et al. Infrared metasurface-enabled compact polarization nanodevices. Materials Today, 50, 499-515(2021).

    [35] Y Yao, R Shankar, M A Kats, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 14, 6526-6532(2014).

    [36] A Tittl, A K Michel, M Schaferling, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 27, 4597-4603(2015).

    [37] S Jiang, J Li, J Li, et al. Genetic optimization of plasmonic metamaterial absorber towards dual-band infrared imaging polarimetry. Optics Express, 28, 22617-22629(2020).

    [38] L Yong-qian, G Yong-jun, S Lei, et al. Polarization-dependent absorption of rectangular-block metamaterials in infrared region. Optical and Precision Engineering, 22, 2998-3003(2014).

    [39] N Yu, P Genevet, M A Kats, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [40] Jingdong Wang, Wencheng Ye, Weiting Zhang, et al. Design of infrared metasurfaces splitter arrays. Optical and Precision Engineering, 29, 674-681(2021).

    [41] Yitian Liu, Qikai Chen, Zhiyuan Tang, et al. Research progress of aberration analysis and imaging technology based on metalens. Chinese Optics, 14, 831-850(2021).

    [42] Yilin Wang, Qingbin Fan, Ting Xu. Progress of advanced imaging applications based on electromagnetic metalens. Infrared and Laser Engineering, 50, 20211026(2021).

    [43] Tianyou Li, Lingling Huang, Yongtian Wang. The principle and research progress of metasurfaces. Chinese Optics, 10, 523-540(2017).

    [44] N Yu, F Aieta, P Genevet, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 12, 6328-6333(2012).

    [45] A Safaei, A Vázquez-Guardado, D Franklin, et al. High-efficiency broadband mid-infrared flat lens. Advanced Optical Materials, 6, 1800216(2018).

    [46] C Pfeiffer, A Grbic. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 110, 197401(2013).

    [47] A E H Love. The integration of the equations of propagation of electric waves. Philosophical Transactions of the Royal Society of London. Series A, 197, 1-45(1901).

    [48] S A Schelkunoff. Some equivalence theorems of electromagnetics and their application to radiation problems. The Bell System Technical Journal, 15, 92-112(1936).

    [49] A Epstein, G V Eleftheriades. Huygens’ metasurfaces via the equivalence principle: design and applications. Journal of the Optical Society of America B, 33, A31-A50(2016).

    [50] S Campione, L I Basilio, L K Warne, et al. Tailoring dielectric resonator geometries for directional scattering and Huygens' metasurfaces. Optics Express, 23, 2293-2307(2015).

    [51] L Zhang, J Ding, H Zheng, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 9, 1481(2018).

    [52] A Leitis, A Heßler, S Wahl, et al. All‐dielectric programmable Huygens' metasurfaces. Advanced Functional Materials, 30, 1910259(2020).

    [53] M Y Shalaginov, S An, F Yang, et al. Single-element diffraction-limited fisheye metalens. Nano Letters, 20, 7429-7437(2020).

    [54] X Li, X Ma, X Luo. Principles and applications of metasurfaces with phase modulation. Opto-Electronic Engineering, 44, 255-275(2017).

    [55] S Pancharatnam. Generalized theory of interference and its applications. Proceedings of the Indian Academy of Sciences - Section A, 44, 398-417(1956).

    [56] M V Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392, 45-57(1984).

    [57] M L Tseng, Y Jahani, A Leitis, et al. Dielectric metasurfaces enabling advanced optical biosensors. ACS Photonics, 8, 47-60(2021).

    [58] A Tittl, A John-Herpin, A Leitis, et al. Metasurface-based molecular biosensing aided by artificial intelligence. Angewandte Chemie International Edition, 58, 14810-14822(2019).

    [59] M Osawa, M Ikeda. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. The Journal of Physical Chemistry, 95, 9914-9919(1991).

    [60] M Osawa. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS). Bulletin of the Chemical Society of Japan, 70, 2861-2880(1997).

    [61] G T Merklin, P R Griffiths. Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films. Langmuir, 13, 6159-6163(1997).

    [62] T Wadayama, M Takada, K Sugiyama, et al. Infrared absorption enhancement of C60 on silver islands: contribution of charge transfer and collective electron resonance. Physical Review B, 66, 193401(2002).

    [63] Z Yujun, Devi M Shyamala, H Travis, et al. Review of mid-infrared plasmonic materials. Journal of Nanophotonics, 9, 1-21(2015).

    [64] F Le, D W Brandl, Y A Urzhumov, et al. Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption. ACS Nano, 2, 707-718(2008).

    [65] C W Hsu, B Zhen, A D Stone, et al. Bound states in the continuum. Nature Reviews Materials, 1, 16048(2016).

    [66] M Rybin, Y Kivshar. Supercavity lasing. Nature, 541, 164-165(2017).

    [67] M V Rybin, K L Koshelev, Z F Sadrieva, et al. High-Q supercavity modes in subwavelength dielectric resonators. Physical Review Letters, 119, 243901(2017).

    [68] K Koshelev, S Lepeshov, M Liu, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Physical Review Letters, 121, 193903(2018).

    [69] K Ou, F Yu, G Li, et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 6, eabc0711(2020).

    [70] Q Fan, Y Wang, M Liu, et al. High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 43, 6005-6008(2018).

    [71] M Jung, S Dutta-Gupta, N Dabidian, et al. Polarimetry using graphene-integrated anisotropic metasurfaces. ACS Photonics, 5, 4283-4288(2018).

    [72] J Wei, Y Li, L Wang, et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nature Communications, 11, 6404(2020).

    [73] J Bai, C Wang, X Chen, et al. Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection. Photonics Research, 7, 1051-1060(2019).

    [74] X Li, H Wang, X Xu, et al. Mid-infrared full-Stokes polarization detection based on dielectric metasurfaces. Optics Communications, 484, 126690(2021).

    [75] Y Chen, S Pu, C Wang, et al. Voltage tunable mid-wave infrared reflective varifocal metalens via an optomechanic cavity. Optics Letters, 46, 1930-1933(2021).

    [76] T Lewi, N A Butakov, H A Evans, et al. Thermally reconfigurable meta-optics. IEEE Photonics Journal, 11, 1-16(2019).

    [77] I M Pryce, K Aydin, Y A Kelaita, et al. Highly strained compliant optical metamaterials with large frequency tunability. Nano Letters, 10, 4222-4227(2010).

    [78] T Roy, S Zhang, I W Jung, et al. Dynamic metasurface lens based on MEMS technology. APL Photonics, 3, 021302(2018).

    [79] J B Reeves, R K Jayne, T J Stark, et al. Tunable infrared metasurface on a soft polymer scaffold. Nano Letters, 18, 2802-2806(2018).

    [80] W Dong, Y Qiu, X Zhou, et al. Tunable mid‐infrared phase‐change Metasurface. Advanced Optical Materials, 6, 1701346(2018).

    [81] J Tian, Q Li, J Lu, et al. Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances. Optics Express, 26, 23918-23925(2018).

    [82] R Alaee, M Albooyeh, S Tretyakov, et al. Phase-change material-based nanoantennas with tunable radiation patterns. Optics Letters, 41, 4099-4102(2016).

    [83] M Wei, Z Song, Y Deng, et al. Large-angle mid-infrared absorption switch enabled by polarization-independent GST metasurfaces. Materials Letters, 236, 350-353(2019).

    [84] Yin X, Steinle T, Huang L, et al. Beam switching bifocal zoom lensing using active plasmonic metasurfaces [J]. Light: Science & Applications 2017, 6 (7): e17016.

    [85] C Peng, K Ou, G Li, et al. Tunable and polarization-sensitive perfect absorber with a phase-gradient heterojunction metasurface in the mid-infrared. Optics Express, 29, 12893-12902(2021).

    [86] Y Sun, Y Wang, H Ye, et al. Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband. Optics Communications, 503, 127442(2022).

    [87] S K Ghosh, V S Yadav, S Das, et al. Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range. IEEE Transactions on Electromagnetic Compatibility, 62, 346-354(2020).

    [88] J Cheng, F Fan, S Chang. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control. Nanomaterials, 9, 398(2019).

    [89] J Park, J H Kang, S J Kim, et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Letters, 17, 407-413(2017).

    [90] M Y Shalaginov, S An, Y Zhang, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 12, 1225(2021).

    [91] Y Qu, Q Li, K Du, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser & Photonics Reviews, 11, 1700091(2017).

    [92] M C Sherrott, P W C Hon, K T Fountaine, et al. Experimental demonstration of >230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces. Nano Letters, 17, 3027-3034(2017).

    [93] N Dabidian, S Dutta-Gupta, I Kholmanov, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces. Nano Letters, 16, 3607-3615(2016).

    [94] C M Watts, X Liu, W J Padilla. Metamaterial electromagnetic wave absorbers. Advanced Materials, 24, OP98-OP120(2012).

    [95] B Zeng, Z Huang, A Singh, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light:Science & Applications, 7, 51(2018).

    [96] F Li, J Deng, J Zhou, et al. HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses. Scientific Reports, 10, 6372(2020).

    [97] S Zhang, A Soibel, S A Keo, et al. Solid-immersion metalenses for infrared focal plane arrays. Applied Physics Letters, 113, 111104(2018).

    [98] H Hou, Y Zhang, Z Luo, et al. Design and fabrication of monolithically integrated metalens for higher effective fill factor in long-wave infrared detectors. Optics and Lasers in Engineering, 150, 106849(2022).

    [99] O Akın, H V Demir. High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays. Applied Physics Letters, 110, 143106(2017).

    [100] Zheludev N I, Noginov M A, Engheta N, et al. Alldielectric metasurface lenses f focal plane arrays operating in wave infrared spectrum [C]Metamaterials, Metadevices, Metasystems 2018, 2018.

    [101] C L Bogh, A J Muhowski, D A Montealegre, et al. Over three hundred percent increased light extraction from emitters at mid-infrared wavelengths using metalenses. ACS Applied Electronic Materials, 2, 2638-2643(2020).

    [102] A Arbabi, R M Briggs, Y Horie, et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Optics Express, 23, 33310-33317(2015).

    [103] K Chen, T D Dao, S Ishii, et al. Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Advanced Functional Materials, 25, 6637-6643(2015).

    [104] F Neubrech, A Pucci, T W Cornelius, et al. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Physical Review Letters, 101, 157403(2008).

    [105] M Abb, Y Wang, N Papasimakis, et al. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Letters, 14, 346-352(2014).

    [106] L V Brown, K Zhao, N King, et al. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties. Journal of the American Chemical Society, 135, 3688-3695(2013).

    [107] K Chen, R Adato, H Altug. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano, 6, 7998-8006(2012).

    [108] E Cubukcu, S Zhang, Y-S Park, et al. Split ring resonator sensors for infrared detection of single molecular monolayers. Applied Physics Letters, 95, 043113(2009).

    [109] L V Brown, X Yang, K Zhao, et al. Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Letters, 15, 1272-1280(2015).

    [110] H Aouani, H Šípová, M Rahmani, et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano, 7, 669-675(2013).

    [111] G Q Wallace, H C Foy, S M Rosendahl, et al. Dendritic plasmonics for mid-infrared spectroscopy. The Journal of Physical Chemistry C, 121, 9497-9507(2017).

    [112] C Wu, A B Khanikaev, R Adato, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Materials, 11, 69-75(2011).

    [113] C Huck, J Vogt, M Sendner, et al. Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods. ACS Photonics, 2, 1489-1497(2015).

    [114] O Limaj, D Etezadi, N J Wittenberg, et al. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Letters, 16, 1502-1508(2016).

    [115] D Etezadi, J B t Warner, H A Lashuel, et al. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas. ACS Sensors, 3, 1109-1117(2018).

    [116] X Hui, C Yang, D Li, et al. Infrared plasmonic biosensor with tetrahedral DNA nanostructure as carriers for label-free and ultrasensitive detection of miR-155. Advanced Science, 8, 2100583(2021).

    [117] H Hu, X Yang, F Zhai, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nature Communications, 7, 12334(2016).

    [118] T Wenger, G Viola, J Kinaret, et al. High-sensitivity plasmonic refractive index sensing using graphene. 2 D Materials, 4, 025103(2017).

    [119] Z Li, Y Zhu, Y Hao, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein. ACS Photonics, 6, 501-509(2019).

    [120] A Tittl, A Leitis, M Liu, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science, 360, 1105-1109(2018).

    [121] A Leitis, A Tittl, M Liu, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Science Advances, 5, eaaw2871(2019).

    [122] Y-S Chen, D Meng, W-Z Ma, et al. Fingerprint detection in the mid-infrared region based on guided-mode resonance and phonon-polariton coupling of analyte. Optics Express, 29, 37234-37244(2021).

    [123] Z Liu, D Zhu, S P Rodrigues, et al. Generative model for the inverse design of metasurfaces. Nano Letters, 18, 6570-6576(2018).

    [124] M M R Elsawy, S Lanteri, R Duvigneau, et al. Numerical optimization methods for metasurfaces. Laser & Photonics Reviews, 14, 1900445(2020).

    [125] Z Jin, S Mei, S Chen, et al. Complex inverse design of meta-optics by segmented hierarchical evolutionary algorithm. ACS Nano, 13, 821-829(2019).

    [126] S D Campbell, D Sell, R P Jenkins, et al. Review of numerical optimization techniques for meta-device design [Invited]. Optical Materials Express, 9, 1842(2019).

    [127] K Yao, R Unni, Y Zheng. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 8, 339-366(2019).

    [128] W Ma, Z Liu, Z A Kudyshev, et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2021).

    [129] J Li, L Bao, S Jiang, et al. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Optics Express, 27, 8375-8386(2019).

    [130] F H Koppens, D E Chang, de Abajo F J Garcia. Graphene plasmonics: A platform for strong light-matter interactions. Nano Letters, 11, 3370-3377(2011).

    [131] Y Hu, X Li, X Wang, et al. Progress of micro-nano fabrication technologies for optical metasurfaces. Infrared and Laser Engineering, 49, 20201035(2020).

    Yaoyuan Lei, Qikai Chen, Yitian Liu, Yaoguang Ma. Principles and application progress of mid-infrared metasurfaces in imaging and detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220082
    Download Citation