• Photonics Insights
  • Vol. 2, Issue 4, R08 (2023)
Jian Luo1、2、†, Qile Wu1, Lin Zhou1、*, Weixi Lu1, Wenxing Yang2, and Jia Zhu1、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, China
  • 2School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, China
  • show less
    DOI: 10.3788/PI.2023.R08 Cite this Article Set citation alerts
    Jian Luo, Qile Wu, Lin Zhou, Weixi Lu, Wenxing Yang, Jia Zhu. Plasmon-induced hot carrier dynamics and utilization[J]. Photonics Insights, 2023, 2(4): R08 Copy Citation Text show less
    References

    [1] G. Barbillon. Plasmonics and its applications. Materials, 12, 1502(2019).

    [2] A. Naldoni, V. M. Shalaev, M. L. Brongersma. Applying plasmonics to a sustainable future. Science, 356, 908(2017).

    [3] R. L. M. Gieseking. Plasmons: untangling the classical, experimental, and quantum mechanical definitions. Mater. Horiz., 9, 25(2022).

    [4] J. M. Pitarke et al. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys., 70, 1(2007).

    [5] E. Petryayeva, U. J. Krull. Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review. Anal. Chim. Acta, 706, 8(2011).

    [6] J. Pérez-Juste et al. Gold nanorods: synthesis, characterization and applications. Coordin. Chem. Rev., 249, 1870(2005).

    [7] V. Giannini et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888(2011).

    [8] S. Linic, P. Christopher, D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater., 10, 911(2011).

    [9] P. L. Stiles et al. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem., 1, 601(2008).

    [10] A. V. Kabashin et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867(2009).

    [11] H. Su et al. Chemically engineered dendrite growth of uniform monolayers MoS2 for enhanced photoluminescence [Invited]. Chin. Opt. Lett., 20, 011602(2022).

    [12] H. Su et al. Surface plasmon polariton–enhanced photoluminescence of monolayer MoS2 on suspended periodic metallic structures. Nanophotonics, 10, 975(2021).

    [13] J. Butet, P.-F. Brevet, O. J. F. Martin. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano, 9, 10545(2015).

    [14] U. Aslam et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal., 1, 656(2018).

    [15] Y. Kim, J. G. Smith, P. K. Jain. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem., 10, 763(2018).

    [16] E. Pensa et al. Spectral screening of the energy of hot holes over a particle plasmon resonance. Nano Lett., 19, 1867(2019).

    [17] A. Gelle et al. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev., 120, 986(2020).

    [18] G. Tagliabue et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater., 19, 1312(2020).

    [19] W. Li, J. Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Lett., 14, 3510(2014).

    [20] C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 8, 95(2014).

    [21] J. Y. Park et al. Surface plasmon-induced hot carriers: generation, detection, and applications. Acc. Chem. Res., 55, 3727(2022).

    [22] M. Abb et al. All-optical control of a single plasmonic nanoantenna-ITO Hybrid. Nano Lett., 11, 2457(2011).

    [23] M. Taghinejad et al. Hot-electron-assisted femtosecond all-optical modulation in plasmonics. Adv. Mater., 30, 1704915(2018).

    [24] M. Taghinejad et al. Transient second-order nonlinear media: breaking the spatial symmetry in the time domain via hot-electron transfer. Phys. Rev. Lett., 124, 013901(2020).

    [25] M. Ahlawat, D. Mittal, V. G. Rao. Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Commun. Mater., 2, 114(2021).

    [26] Y. Gao et al. Observation of charge separation enhancement in plasmonic photocatalysts under coupling conditions. Nano Lett., 23, 3540(2023).

    [27] G. V. Hartland et al. What’s so hot about electrons in metal nanoparticles?. ACS Energy Lett., 2, 1641(2017).

    [28] Y. K. Lee et al. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett., 11, 4251(2011).

    [29] Y. Takahashi, T. Tatsuma. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett., 99, 182110(2011).

    [30] Y. L. Wong et al. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes. Nanoscale, 13, 2792(2021).

    [31] C. Zhang et al. Thermodynamic loss mechanisms and strategies for efficient hot-electron photoconversion. Nano Energy, 55, 164(2019).

    [32] M. L. Tran et al. Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J. Am. Chem. Soc., 130, 17240(2008).

    [33] M. Wienold et al. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback. Opt. Express, 22, 3334(2014).

    [34] C. Ba et al. Narrow-band and high-contrast asymmetric transmission based on metal-metal-metal asymmetric gratings. Opt. Express, 27, 25107(2019).

    [35] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Broadband plasmonic half-wave plates in reflection. Opt. Lett., 38, 513(2013).

    [36] S. Raza et al. Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity. Phys. Rev. B, 88, 115401(2013).

    [37] M. Bauer, A. Marienfeld, M. Aeschlimann. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci., 90, 319(2015).

    [38] K. Wu et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 349, 632(2015).

    [39] J. Schneider et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev., 114, 9919(2014).

    [40] C. Voisin et al. Size-dependent electron-electron interactions in metal nanoparticles. Phys. Rev. Lett., 85, 2200(2000).

    [41] P. O’Keeffe et al. Disentangling the temporal dynamics of nonthermal electrons in photoexcited gold nanostructures. Laser Photonics Rev., 15, 2100017(2021).

    [42] S. Wu, Y. Chen, S. Gao. Plasmonic photocatalysis with nonthermalized hot carriers. Phys. Rev. Lett., 129, 086801(2022).

    [43] O. Demichel et al. Dynamics, efficiency, and energy distribution of nonlinear plasmon-assisted generation of hot carriers. ACS Photonics, 3, 791(2016).

    [44] Y. Li et al. Coherent interference fringes of two-photon photoluminescence in individual au nanoparticles: the critical role of the intermediate state. Phys. Rev. Lett., 127, 073902(2021).

    [45] L. Jauffred et al. Plasmonic heating of nanostructures. Chem. Rev., 119, 8087(2019).

    [46] C. K. Sun et al. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B, 50, 15337(1994).

    [47] J. H. Hodak, A. Henglein, G. V. Hartland. Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes. J. Chem. Phys., 111, 8613(1999).

    [48] S. Link et al. Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys., 111, 1255(1999).

    [49] J. Hohlfeld et al. Electron and lattice dynamics following optical excitation of metals. Chem. Phys., 251, 237(2000).

    [50] B. Rethfeld et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B, 65, 214303(2002).

    [51] M. Obergfell, J. Demsar. Tracking the time evolution of the electron distribution function in copper by femtosecond broadband optical spectroscopy. Phys. Rev. Lett., 124, 037401(2020).

    [52] P. B. Allen. Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett., 59, 1460(1987).

    [53] A. Schirato et al. Ultrafast hot electron dynamics in plasmonic nanostructures: experiments, modelling, design. Nanophotonics, 12, 1(2023).

    [54] J. B. Khurgin. Hot carriers generated by plasmons: where are they generated and where do they go from there?. Faraday Discuss., 214, 35(2019).

    [55] L. Chang et al. Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Lett., 4, 2552(2019).

    [56] J. B. Khurgin. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 9, 453(2020).

    [57] S. S. Li et al. How to utilize excited plasmon energy efficiently. ACS Nano, 15, 10759(2021).

    [58] S. Linic, S. Chavez, R. Elias. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater., 20, 916(2021).

    [59] P. Christopher, M. Moskovits. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem., 68, 379(2017).

    [60] S. K. Cushing, N. Wu. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett., 7, 666(2016).

    [61] M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotech., 10, 25(2015).

    [62] C. Zhang et al. Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photonics Rev., 16, 2100714(2022).

    [63] A. Agrawal et al. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev., 118, 3121(2018).

    [64] X. Liu, M. T. Swihart. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem. Soc. Rev., 43, 3908(2014).

    [65] Y. Guo et al. Plasmonic semiconductors: materials, tunability and applications. Prog. Mater Sci., 138, 101158(2023).

    [66] Y. Qin et al. Coaction effect of radiative and non-radiative damping on the lifetime of localized surface plasmon modes in individual gold nanorods. J. Chem. Phys., 158, 104701(2023).

    [67] M. M. Alvarez et al. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B, 101, 3706(1997).

    [68] P. Wissman, H.-U. Finzel. Electrical Resistivity of Thin Metal Films(2007).

    [69] G. V. Hartland. Optical studies of dynamics in noble metal nanostructures. Chem. Rev., 111, 3858(2011).

    [70] U. V. Kreibig. Optical Properties of Metal Clusters(1995).

    [71] S. A. Maier. Plasmonics: Fundamentals and Apllications(2007).

    [72] S. Yoo, Q. H. Park. Spectroscopic ellipsometry for low-dimensional materials and heterostructures. Nanophotonics, 11, 2811(2022).

    [73] R. L. Olmon et al. Optical dielectric function of gold. Phys. Rev. B, 86, 235147(2012).

    [74] P. B. Johnson, R. W. Christy. Optical constant of noble metals. Phys. Rev. B, 6, 4370(1972).

    [75] A. Wokaun, J. P. Gordon, P. F. Liao. Radiation damping in surface-enhanced raman scattering. Phys. Rev. Lett., 48, 957(1982).

    [76] A. Melikyan, H. Minassian. On surface plasmon damping in metallic nanoparticles. Appl. Phys. B, 78, 453(2004).

    [77] H. S. Sehmi, W. Langbein, E. A. Muljarov. Optimizing the Drude-Lorentz model for material permittivity: method, program, and examples for gold, silver, and copper. Phys. Rev. B, 95, 115444(2017).

    [78] Y. Wang et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature, 581, 401(2020).

    [79] M.-L. Thèye. Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B, 2, 3060(1970).

    [80] D. E. Aspnes, E. Kinsbron, D. D. Bacon. Optical properties of Au: sample effects. Phys. Rev. B, 21, 3290(1980).

    [81] A. Alabastri et al. Molding of plasmonic resonances in metallic nanostructures: dependence of the non-linear electric permittivity on system size and temperature. Materials, 6, 4879(2013).

    [82] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264(2013).

    [83] H. U. Yang et al. Optical dielectric function of silver. Phys. Rev. B, 91, 235137(2015).

    [84] Y. Yang et al. Sodium-based concave metasurfaces for high performing plasmonic optical filters by templated spin-on-sodiophobic-glass. Adv. Mater., 35, 2300272(2023).

    [85] E. A. Coronado, G. C. Schatz. Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J. Chem. Phys., 119, 3926(2003).

    [86] C. Sönnichsen et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 88, 077402(2002).

    [87] C. Sönnichsen et al. Plasmon resonances in large noble-metal clusters. New J. Phys., 4, 93(2002).

    [88] C. Noguez. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C, 111, 3806(2007).

    [89] J. M. McMahon, S. K. Gray, G. C. Schatz. Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett., 103, 097403(2009).

    [90] J. M. McMahon, S. K. Gray, G. C. Schatz. Calculating nonlocal optical properties of structures with arbitrary shape. Phys. Rev. B, 82, 035423(2010).

    [91] E. J. Heilweil, R. M. Hochstrasser. Nonlinear spectroscopy and picosecond transient grating study of colloidal gold. J. Chem. Phys., 82, 4762(1985).

    [92] S. Link, M. A. Ei-Sayed. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 54, 331(2003).

    [93] P. Z. El-Khoury, A. G. Joly, W. P. Hess. Hyperspectral dark field optical microscopy of single silver nanospheres. J. Phys. Chem. C, 120, 7295(2016).

    [94] B. Foerster et al. Interfacial states cause equal decay of plasmons and hot electrons at gold-metal oxide interfaces. Nano Lett., 20, 3338(2020).

    [95] M. Bosman et al. Surface plasmon damping quantified with an electron nanoprobe. Sci. Rep., 3, 1312(2013).

    [96] M. Yorulmaz et al. Single-particle absorption spectroscopy by photothermal contrast. Nano Lett., 15, 3041(2015).

    [97] S. Berciaud et al. Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett., 93, 257402(2004).

    [98] S. Berciaud et al. Observation of intrinsic size effects in the optical response of individual gold nanoparticles. Nano Lett., 5, 515(2005).

    [99] K. L. Kelly et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 107, 668(2003).

    [100] N. I. Grigorchuk. Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium. J. Opt. Soc. Am. B, 29, 3404(2012).

    [101] M. B. Ross, G. C. Schatz. Radiative effects in plasmonic aluminum and silver nanospheres and nanorods. J. Phys. D: Appl. Phys., 48, 184004(2015).

    [102] R. Gans. The state of ultramicroscopic silver particles. Ann. Phys., 352, 270(1915).

    [103] C. Huang et al. Study of plasmon resonance in a gold nanorod with an LC circuit model. Opt. Express, 17, 6407(2009).

    [104] C. Huang et al. Long-wavelength optical properties of a plasmonic crystal. Phys. Rev. Lett., 104, 016402(2010).

    [105] L. Zhou et al. Polarization-tunable polariton excitation in a compound plasmonic crystal. Appl. Phys. Lett., 100, 221901(2012).

    [106] L. Novotny, R. X. Bian, X. S. Xie. Theory of nanometric optical tweezers. Phys. Rev. Lett., 79, 645(1997).

    [107] L. Novotny, D. W. Pohl, B. Hecht. Scanning near-field optical porbe with ultrasmall spot size. Opt. Lett., 20, 970(1995).

    [108] W. H. Yang, G. C. Schatz, R. P. Van Duyne. Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys., 103, 869(1995).

    [109] R. X. Bian et al. Single molecule emission characteristics in near-field microscopy. Phys. Rev. Lett., 75, 4772(1995).

    [110] S. Wu et al. Phaselike resonance behavior in optical transmission of sandwich coaxial square ring arrays. Appl. Phys. Lett., 96, 253102(2010).

    [111] C. Novo et al. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys. Chem. Chem. Phys., 8, 3540(2006).

    [112] F. Hubenthal, C. Hendrich, F. Traeger. Damping of the localized surface plasmon polariton resonance of gold nanoparticles. Appl. Phys. B, 100, 225(2010).

    [113] N. Nilius, N. Ernst, H. J. Freund. Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope. Phys. Rev. Lett., 84, 3994(2000).

    [114] J. Bosbach et al. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: Influence of particle size, shape, and chemical surrounding. Phys. Rev. Lett., 89, 257404(2002).

    [115] S. Link, M. A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B, 103, 4212(1999).

    [116] E. Cortes et al. Experimental characterization techniques for plasmon-assisted chemistry. Nat. Rev. Chem., 6, 259(2022).

    [117] S. A. Lee, S. Link. Chemical interface damping of surface plasmon resonances. Acc. Chem. Res., 54, 1950(2021).

    [118] B. Lamprecht et al. Resonant and off-resonant light-driven plasmons in metal nanoparticles studied by femtosecond-resolution third-harmonic generation. Phys. Rev. Lett., 83, 4421(1999).

    [119] Q. Sun et al. Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy. ACS Nano, 10, 3835(2016).

    [120] B. Lambrecht, A. Leitner, F. R. Aussenegg. Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles. Appl. Phys. B, 64, 269(1997).

    [121] B. Lamprecht, A. Leitner, F. R. Aussenegg. SHG studies of plasmon dephasing in nanoparticles. Appl. Phys. B, 68, 419(1999).

    [122] T. Hanke et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett., 103, 257404(2009).

    [123] S. Ogawa et al. Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission. Phys. Rev. Lett., 78, 1339(1997).

    [124] J. Lehmann et al. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett., 85, 2921(2000).

    [125] A. Kubo et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett., 5, 1123(2005).

    [126] Y. Qin et al. Characterization of ultrafast plasmon dynamics in individual gold bowtie by time-resolved photoemission electron microscopy. Appl. Phys. B, 125, 3(2019).

    [127] Y. Li et al. Correlation between near-field enhancement and dephasing time in plasmonic dimers. Phys. Rev. Lett., 124, 016402(2020).

    [128] Y. Xu et al. Polarization manipulated femtosecond localized surface plasmon dephasing time in an individual bowtie structure. Opt. Express, 28, 9310(2020).

    [129] M. Dabrowski, Y. Dai, H. Petek. Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem. Rev., 120, 6247(2020).

    [130] M. Simon et al. Femtosecond time-resolved second-harmonic generation at the surface of alkali metal clusters. Chem. Phys. Lett., 296, 579(1998).

    [131] T. Klar et al. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 80, 4249(1998).

    [132] A. Anderson et al. Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. Nano Lett., 10, 2519(2010).

    [133] T. Zhao et al. Plasmon dephasing in gold nanorods studied using single-nanoparticle interferometric nonlinear optical microscopy. J. Phys. Chem. C, 120, 4071(2016).

    [134] Y. Wu et al. Infrared plasmonics: STEM-EELS characterization of Fabry-Perot resonance damping in gold nanowires. Phys. Rev. B, 101, 085409(2020).

    [135] P. Narang, R. Sundararaman, H. A. Atwater. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics, 5, 96(2016).

    [136] J. B. Khurgin. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech., 10, 2(2015).

    [137] F. Hubenthal. Increased damping of plasmon resonances in gold nanoparticles due to broadening of the band structure. Plasmonics, 8, 1341(2013).

    [138] H. Ehrenreich, H. R. Philipp, B. Segall. Optical properties of aluminium. Phys. Rev., 132, 1918(1963).

    [139] A. Piot et al. Collective excitation of plasmonic hot-spots for enhanced hot charge carrier transfer in metal/semiconductor contacts. Nanoscale, 7, 8294(2015).

    [140] L. Zhou et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Lett., 16, 1478(2016).

    [141] X. Zhou et al. Electrochemical imaging of photoanodic water oxidation enhancements on TiO2 thin films modified by subsurface aluminum nanodimers. ACS Nano, 10, 9346(2016).

    [142] J. S. Biggins, S. Yazdi, E. Ringe. Magnesium nanoparticle plasmonics. Nano Lett., 18, 3752(2018).

    [143] H. Gong et al. Non-noble metal based broadband photothermal absorbers for cost effective interfacial solar thermal conversion. Nanophotonics, 9, 1539(2020).

    [144] M. Sayed et al. Non-noble plasmonic metal-based photocatalysts. Chem. Rev., 122, 10484(2022).

    [145] W. E. Lawrence, J. W. Wilkins. Electron-electron scattering in the transport coefficients of simple metals. Phys. Rev. B, 7, 2317(1973).

    [146] Y. Hattori et al. Phonon-assisted hot carrier generation in plasmonic semiconductor systems. Nano Lett., 21, 1083(2021).

    [147] J. B. Khurgin. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss., 178, 109(2015).

    [148] C. Yannouleas, R. A. Broglia. Landau damping and wall dissipation in large metal clusters. Ann. Phys., 217, 105(1992).

    [149] T. V. Shahbazyan. Surface-assisted carrier excitation in plasmonic nanostructures. Plasmonics, 13, 757(2018).

    [150] A. V. Uskov et al. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects. Nanoscale, 6, 4716(2014).

    [151] A. V. Uskov et al. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: a quantum mechanical consideration. Plasmonics, 9, 185(2014).

    [152] A. Giugni et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotech., 8, 845(2013).

    [153] L. V. Besteiro et al. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photonics, 4, 2759(2017).

    [154] S. Kim, S. Lee, S. Yoon. Effect of nanoparticle size on plasmon-driven reaction efficiency. ACS Appl. Mater. Interfaces, 14, 4163(2022).

    [155] H. Hövel et al. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B, 48, 18178(1993).

    [156] T. G. Habteyes et al. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano, 6, 5702(2012).

    [157] B. Foerster et al. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv., 5, eaav0704(2019).

    [158] M. J. Kale, P. Christopher. Plasmons at the interface. Science, 349, 587(2015).

    [159] B. Foerster et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano, 11, 2886(2017).

    [160] A. M. Brown et al. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano, 10, 957(2016).

    [161] M. Bernardi et al. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun., 6, 7044(2015).

    [162] M. Kornbluth, A. Nitzan, T. Seideman. Light-induced electronic non-equilibrium in plasmonic particles. J. Chem. Phys., 138, 174707(2013).

    [163] H. Zhang, A. O. Govorov. Optical generation of hot plasmonic carriers in metal nanocrystals: the effects of shape and field enhancement. J. Phys. Chem. C, 118, 7606(2014).

    [164] J. G. Liu et al. Relaxation of plasmon-induced hot carriers. ACS Photonics, 5, 2584(2018).

    [165] A. O. Govorov, H. Zhang, Y. K. Gun’ko. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C, 117, 16616(2013).

    [166] T. P. White, K. R. Catchpole. Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl. Phys. Lett., 101, 073905(2012).

    [167] A. O. Govorov et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today, 9, 85(2014).

    [168] A. Manjavacas et al. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 8, 7630(2014).

    [169] R. Sundararaman et al. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 5, 5788(2014).

    [170] T. P. Rossi, P. Erhart, M. Kuisma. Hot-carrier generation in plasmonic nanoparticles: the importance of atomic structure. ACS Nano, 14, 9963(2020).

    [171] M. Kuisma et al. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B, 82, 115106(2010).

    [172] O. Gritsenko et al. Self-consistent approximation to the Kohn-Sham exchange potential. Phys. Rev. A, 51, 1944(1995).

    [173] J. Aizpurua et al. Theory of hot electrons: general discussion. Faraday Discuss., 214, 245(2019).

    [174] J. Ma, Z. Wang, L.-W. Wang. Interplay between plasmon and single-particle excitations in a metal nanocluster. Nat. Commun., 6, 10107(2015).

    [175] A. O. Govorov, H. Zhang. Kinetic density functional theory for plasmonic nanostructures: breaking of the plasmon peak in the quantum regime and generation of hot electrons. J. Phys. Chem. C, 119, 6181(2015).

    [176] A. V. Uskov et al. Landau damping in hybrid plasmonics. J. Phys. Chem. Lett., 13, 997(2022).

    [177] A. V. Uskov et al. Effect of tamm surface states on landau damping in metal-semiconductor nanostructures. Adv. Opt. Mater., 11, 2201388(2023).

    [178] L. T. M. Huynh, S. Kim, S. Yoon. Effect of material and shape of nanoparticles on hot carrier generation. ACS Photonics, 9, 3260(2022).

    [179] H. Harutyunyan et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nature Nanotech., 10, 770(2015).

    [180] X. Yang et al. Hot spot engineering in hierarchical plasmonic nanostructures. Small, 19, 2205659(2023).

    [181] X. Yang et al. Large-area, ultrahigh-enhancement, and array-type hot spots in plasmonic nanocube dimer-on-film nanocavity. Plasmonics, 18, 587(2023).

    [182] L. Zhou et al. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy, 32, 195(2017).

    [183] L. Zhou et al. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl. Sci. Rev., 6, 562(2019).

    [184] J. Liang et al. Lithium-plasmon-based low-powered dynamic color display. Natl. Sci. Rev., 10, nwac120(2023).

    [185] Y. Wang et al. All-dielectric insulated 3D plasmonic nanoparticles for enhanced self-floating solar evaporation under one sun. Adv. Opt. Mater., 11, 2201907(2023).

    [186] C. Chen et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy, 51, 451(2018).

    [187] X. Wang et al. Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation. ACS Nano, 15, 10553(2021).

    [188] L. Zhou et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics, 10, 393(2016).

    [189] L. Zhou et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv., 2, 1501227(2016).

    [190] Y. Fang, N.-H. Seong, D. D. Dlott. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 321, 388(2008).

    [191] X.-T. Kong, Z. Wang, A. O. Govorov. Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination. Adv. Opt. Mater., 5(2017).

    [192] L. V. Besteiro, A. O. Govorov. Amplified generation of hot electrons and quantum surface effects in nanoparticle dimers with plasmonic hot spots. J. Phys. Chem. C, 120, 19329(2016).

    [193] Z. Fusco et al. Cathodoluminescence spectroscopy of complex dendritic Au architectures for application in plasmon-mediated photocatalysis and as SERS substrates. Adv. Mater. Interfaces, 10, 2202236(2023).

    [194] P. Christopher et al. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater., 11, 1044(2012).

    [195] V.-Q. Nguyen et al. Plasmon-induced nanolocalized reduction of diazonium salts. ACS Omega, 2, 1947(2017).

    [196] Y. Wy et al. Exploiting plasmonic hot spots in Au-based nanostructures for sensing and photocatalysis. Acc. Chem. Res., 55, 831(2022).

    [197] L. V. Besteiro et al. The fast and the furious: ultrafast hot electrons in plasmonic metastructures. size and structure matter. Nano Today, 27, 120(2019).

    [198] J. W. Hong et al. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced raman scattering properties. J. Am. Chem. Soc., 134, 4565(2012).

    [199] A. Sousa-Castillo et al. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au–TiO2 nanoarchitectures. J. Phys. Chem. C, 120, 11690(2016).

    [200] P. Nordlander et al. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899(2004).

    [201] L. Schumacher et al. Precision plasmonics with monomers and dimers of spherical gold nanoparticles: nonequilibrium dynamics at the time and space limits. J. Phys. Chem. C, 123, 13181(2019).

    [202] G. Prakash et al. Plasmon-induced efficient hot carrier generation in graphene on gold ultrathin film with periodic array of holes: ultrafast pump-probe spectroscopy. J. Chem. Phys., 151, 234712(2019).

    [203] S. Agrawal et al. Plasmonic photocatalytic enhancement of L-Cysteine self-assembled gold nanoparticle clusters for fenton reaction catalysis. Langmuir, 37, 3281(2021).

    [204] L. Nan et al. Investigating plasmonic catalysis kinetics on hot-spot engineered nanoantennae. Nano Lett., 23, 2883(2023).

    [205] Y. Zhai et al. Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors. ACS Appl. Nano Mater., 3, 149(2020).

    [206] M. Yu et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252(2022).

    [207] M. Bonn et al. Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport. Phys. Rev. B, 61, 1101(2000).

    [208] J. Pettine, D. J. Nesbitt. Emerging methods for controlling hot carrier excitation and emission distributions in nanoplasmonic systems. J. Phys. Chem. C, 126, 14767(2022).

    [209] S. X. Wu, M. Sheldon. Mechanisms of photothermalization in plasmonic nanostructures: insights into the steady state. Annu. Rev. Phys. Chem., 74, 521(2023).

    [210] A. M. Brown et al. Experimental and Ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys. Rev. Lett., 118, 087401(2017).

    [211] J. Budai et al. Ultrasensitive probing of plasmonic hot electron occupancies. Nat. Commun., 13, 6695(2022).

    [212] H. Reddy et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science, 369, 423(2020).

    [213] T. Heilpern et al. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements. Nat. Commun., 9, 1853(2018).

    [214] F. X. Tong et al. Plasmon-mediated nitrobenzene hydrogenation with formate as the hydrogen donor studied at a single-particle level. ACS Catal., 11, 3801(2021).

    [215] F. X. Tong et al. Probing the mechanism of plasmon-enhanced ammonia borane methanolysis on a CuAg alloy at a single-particle level. ACS Catal., 11, 10814(2021).

    [216] J. Song et al. Highly efficient plasmon induced hot-electron transfer at Ag/TiO2 interface. ACS Photonics, 8, 1497(2021).

    [217] S. Tan et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photonics, 11, 806(2017).

    [218] S. Tan et al. Coherent electron transfer at the Ag/Graphite heterojunction interface. Phys. Rev. Lett., 120, 126801(2018).

    [219] E. Spurio et al. Injecting electrons into CeO2 via photoexcitation of embedded Au nanoparticles. ACS Photonics, 10, 1566(2023).

    [220] J. S. Pelli Cresi et al. Ultrafast dynamics of plasmon-mediated charge transfer in Ag@CeO2 studied by free electron laser time-resolved X-ray absorption spectroscopy. Nano Lett., 21, 1729(2021).

    [221] J. S. Pelli Cresi et al. Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles. Nanoscale, 11, 10282(2019).

    [222] H. Shan et al. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light Sci. Appl., 8, 9(2019).

    [223] A. Furube et al. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 129, 14852(2007).

    [224] R. Katoh et al. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B, 108, 4818(2004).

    [225] L. Du et al. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C, 113, 6454(2009).

    [226] L. Zhai et al. Epitaxial growth of highly symmetrical branched noble metal-semiconductor heterostructures with efficient plasmon-induced hot-electron transfer. Nat. Commun., 14, 2538(2023).

    [227] D. C. Ratchford et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle TiO2 films. Nano Lett., 17, 6047(2017).

    [228] K. F. Wu et al. Plasmon-induced hot electron transfer from the Au Tip to CdS rod in CdS-Au nanoheterostructures. Nano Lett., 13, 5255(2013).

    [229] Y. Liu et al. Efficient hot electron transfer from small Au nanoparticles. Nano Lett., 20, 4322(2020).

    [230] H. Dong et al. Shell thickness dependence of the plasmon-induced hot-electron injection process in Au@CdS core-shell nanocrystals. J. Phys. Chem. C, 125, 19906(2021).

    [231] D. Contreras et al. Ultrafast electron transfer at the interface of gold nanoparticles and methylene blue molecular adsorbates. Phys. Chem. Chem. Phys., 24, 17271(2022).

    [232] R. Long, O. V. Prezhdo. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc., 136, 4343(2014).

    [233] X. Li et al. Real-time time-dependent electronic structure theory. Chem. Rev., 120, 9951(2020).

    [234] J. B. Khurgin et al. Direct plasmonic excitation of the hybridized surface states in metal nanoparticles. ACS Photonics, 8, 2041(2021).

    [235] J. Fojt et al. Hot-carrier transfer across a nanoparticle-molecule junction: the importance of orbital hybridization and level alignment. Nano Lett., 22, 8786(2022).

    [236] K. Kluczyk-Korch, T. J. Antosiewicz. Hot carrier generation in a strongly coupled molecule-plasmonic nanoparticle system. Nanophotonics, 12, 1711(2023).

    [237] J. Ma, S. W. Gao. Plasmon-induced electron-hole separation at the Ag/TiO2(110) interface. ACS Nano, 13, 13658(2019).

    [238] P. V. Kumar et al. Plasmon-induced direct hot-carrier transfer at metal-acceptor interfaces. ACS Nano, 13, 3188(2019).

    [239] L. Yan, F. Wang, S. Meng. Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. ACS Nano, 10, 5452(2016).

    [240] L. Yan et al. Plasmon-induced ultrafast hydrogen production in liquid water. J. Phys. Chem. Lett., 9, 63(2018).

    [241] C. Boerigter et al. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun., 7, 10545(2016).

    [242] L. V. Melendez et al. Optimal geometry for plasmonic hot-carrier extraction in metal-semiconductor nanocrystals. ACS Nano, 17, 4659(2023).

    [243] S. J. Tan et al. Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions. J. Am. Chem. Soc., 139, 6160(2017).

    [244] Y. M. Zhang et al. Indirect to direct charge transfer transition in plasmon-enabled CO2 photoreduction. Adv. Sci., 9, 2102978(2022).

    [245] Y. Zhang et al. Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer. Nano Res., 15, 3894(2022).

    [246] C. Boerigter, U. Aslam, S. Linic. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano, 10, 6108(2016).

    [247] P. Christopher, H. L. Xin, S. Linic. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem., 3, 467(2011).

    [248] S. Mukherjee et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett., 13, 240(2013).

    [249] M. J. Kale, T. Avanesian, P. Christopher. Direct photocatalysis by plasmonic nanostructures. ACS Catal., 4, 116(2014).

    [250] P. Lianos. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Appl. Catal. B, 210, 235(2017).

    [251] Y. Zi et al. Recent progress in interface engineering of nanostructures for photoelectrochemical energy harvesting applications. Small, 19, 2208274(2023).

    [252] C. Hu et al. Photocatalysis enhanced by external fields. Angew. Chem. Int. Ed., 60, 16309(2021).

    [253] X. B. Li et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catal., 11, 4739(2021).

    [254] B. Pan et al. Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. J. Energy Chem., 57, 1(2021).

    [255] R. Qi et al. Efficient visible light photocatalysis enabled by the interaction between dual cooperative defect sites. Appl. Catal. B, 274, 119099(2020).

    [256] X. Ma et al. Switching on the photocatalysis of metal–organic frameworks by engineering structural defects. Angew. Chem. Int. Ed., 58, 12175(2019).

    [257] Z. Li et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew. Chem. Int. Ed., 59, 935(2020).

    [258] C. Zhao et al. Recent advances in conjugated polymers for visible-light-driven water splitting. Adv. Mater., 32, 1907296(2020).

    [259] X. Xue et al. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 13, 414(2015).

    [260] D. Hong et al. High Piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye. ACS Appl. Mater. Interfaces, 8, 21302(2016).

    [261] Y. Cui, J. Briscoe, S. Dunn. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—influence on the carrier separation and stern layer formation. Chem. Mater., 25, 4215(2013).

    [262] R. Su et al. Silver-modified nanosized ferroelectrics as a novel photocatalyst. Small, 11, 202(2015).

    [263] L. Li, P. A. Salvador, G. S. Rohrer. Photocatalysts with internal electric fields. Nanoscale, 6, 24(2014).

    [264] F. Chen et al. The role of polarization in photocatalysis. Angew. Chem. Int. Ed., 58, 10061(2019).

    [265] B. Dai et al. Recent advances in efficient photocatalysis via modulation of electric and magnetic fields and reactive phase control. Adv. Mater., 35, 2210914(2023).

    [266] S. Tu et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater., 30, 2005158(2020).

    [267] Z. Liu, X. Yu, L. Li. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field. Chin. J. Catal., 41, 534(2020).

    [268] H. Li et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett., 15, 2372(2015).

    [269] Z. F. Bian et al. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc., 136, 458(2014).

    [270] B. Zeng et al. Interfacial modulation with aluminum oxide for efficient plasmon-induced water oxidation. Adv. Funct. Mater., 31, 2005688(2021).

    [271] X. Yu et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 46, 29(2018).

    [272] Z. Zhang, J. T. Yates. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev., 112, 5520(2012).

    [273] L. Wen et al. Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites. ACS Photonics, 5, 581(2018).

    [274] K. Akiyoshi, T. Tatsuma. Electrochemical modulation of plasmon-induced charge separation behaviour at Au-TiO2 photocathodes. Photochem. Photobiol. Sci., 18, 1727(2019).

    [275] H. Lee, H. Lee, J. Y. Park. Direct imaging of surface plasmon-driven hot electron flux on the Au nanoprism/TiO2. Nano Lett., 19, 891(2019).

    [276] J. L. Yang et al. In situ Raman probing of hot-electron transfer at gold-graphene interfaces with atomic layer accuracy. Angew. Chem. Int. Ed., 61, e202112749(2022).

    [277] S. Li et al. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy, 95, 107031(2022).

    [278] D. Fu et al. AgNbO3: a lead-free material with large polarization and electromechanical response. Appl. Phys. Lett., 90, 252907(2007).

    [279] H. Liu et al. Piezotronic effect induced Schottky barrier decrease to boost the plasmonic charge separation of BaTiO3-Au heterojunction for the photocatalytic selective oxidation of aminobenzyl alcohol. ACS Appl. Mater. Interfaces, 14, 55548(2022).

    [280] Y. Zhu et al. Enhanced transfer efficiency of plasmonic hot-electron across Au/GaN interface by the piezo-phototronic effect. Nano Energy, 93, 106845(2022).

    [281] J. S. DuChene et al. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem. Int. Ed., 53, 7887(2014).

    [282] H. P. Jia et al. Metallic plasmonic nanostructure arrays for enhanced solar photocatalysis. Laser Photonics Rev., 17, 2200700(2023).

    [283] F. Wang et al. Plasmonic photocatalysis for CO2 reduction: advances, understanding and possibilities. Chem. Eur. J., 29, e202202716(2023).

    [284] N. Yan et al. Plasmonic enhanced nanocrystal infrared photodetectors. Materials, 16, 3216(2023).

    [285] X. P. Zhang, J. H. Yang. Ultrafast plasmonic optical switching structures and devices. Front. Phys., 7(2019).

    [286] J. H. Li et al. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-A review. Nano Res., 15, 10268(2022).

    [287] S. Linic et al. Photochemical transformations on plasmonic metal nanoparticles. Nature Mater., 14, 567(2015).

    [288] X. R. Gan, D. Y. Lei. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coordin. Chem. Rev., 469, 214665(2022).

    [289] S. B. Ramakrishnan et al. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis. Adv. Opt. Mater., 9, 2101128(2021).

    [290] P. Zhang, T. Wang, J. Gong. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater., 27, 5328(2015).

    [291] Z. Zheng et al. Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chem. Eur. J., 24, 18322(2018).

    [292] D. Mittal, M. Ahlawat, V. G. Rao. Recent progress and challenges in plasmon-mediated reduction of CO2 to chemicals and fuels. Adv. Mater. Interfaces, 9, 2102383(2022).

    [293] J. Yang et al. Emerging applications of plasmons in driving CO2 reduction and N-2 fixation. Adv. Mater., 30, 1802227(2018).

    [294] Y. Wei et al. Recent advances in photocatalytic nitrogen fixation and beyond. Nanoscale, 14, 2990(2022).

    [295] M. E. King et al. Plasmonics for environmental remediation and pollutant degradation. Chem Catal., 2, 1880(2022).

    [296] A. Amirjani, N. B. Amlashi, Z. S. Ahmadiani. Plasmon-enhanced photocatalysis based on plasmonic nanoparticles for energy and environmental solutions: a review. ACS Appl. Nano Mater., 6, 9085(2023).

    [297] W. B. Jiang et al. Active site engineering on plasmonic nanostructures for efficient photocatalysis. ACS Nano, 17, 4193(2023).

    [298] S. Naya et al. Red-light-driven water splitting by Au(Core)–CdS(Shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc., 140, 1251(2018).

    [299] B. Wu et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc., 138, 1114(2016).

    [300] J. W. Hong et al. Metal–semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc., 138, 15766(2016).

    [301] D. H. Wi et al. Metal-semiconductor-metal ternary heteronanocrystals with multiple plasmonic effects for efficient photocatalysis. J. Mater. Chem. A, 11, 1343(2023).

    [302] H. Jia et al. Construction of spatially separated gold nanocrystal/cuprous oxide architecture for plasmon-driven CO2 reduction. Nano Lett., 22, 7268(2022).

    [303] H. Jia et al. Symmetry-breaking synthesis of Janus Au/CeO2 nanostructures for visible-light nitrogen photofixation. Chem. Sci., 13, 13060(2022).

    [304] H. Jia et al. Steric hindrance-induced selective growth of rhodium on gold nanobipyramids for plasmon-enhanced nitrogen fixation. Chem. Sci., 14, 5656(2023).

    [305] X. Jiang et al. Plasmonic active “hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production. Adv. Mater., 34, 2109330(2022).

    [306] A. Somdee, S. Wannapop. Enhanced photocatalytic behavior of ZnO nanorods decorated with a Au, ZnWO4, and Au/ZnWO4 composite: Synthesis and characterization. Colloid Interface Sci. Commun., 47, 100591(2022).

    [307] L. Thi NhatVo et al. Compact integration of TiO2 nanoparticles into the cross-points of 3D vertically stacked Ag nanowires for plasmon-enhanced photocatalysis. Nanomaterials, 9, 468(2019).

    [308] S. Koppala et al. Hierarchical ZnO/Ag nanocomposites for plasmon-enhanced visible-light photocatalytic performance. Ceram. Int., 45, 15116(2019).

    [309] T. Wei et al. Au tailored on g-C3N4/TiO2 heterostructure for enhanced photocatalytic performance. J. Alloys Compd., 894, 162338(2022).

    [310] X. Deng et al. Silver nanoparticles embedded 2D g-C3N4 nanosheets toward excellent photocatalytic hydrogen evolution under visible light. Nanotechnology, 33, 175401(2022).

    [311] Q. Pan et al. Boosting charge separation and transfer by plasmon-enhanced MoS2/BiVO4 p–n heterojunction composite for efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng., 6, 6378(2018).

    [312] X. Yu et al. Constructing the Z-scheme TiO2/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation. Appl. Surf. Sci., 556, 149785(2021).

    [313] B. Wang et al. Highly efficient photoelectrochemical synthesis of ammonia using plasmon-enhanced black silicon under ambient conditions. ACS Appl. Mater. Interfaces, 12, 20376(2020).

    [314] M. A. Green et al. Solar cell efficiency tables (Version 61). Prog. Photovolt. Res. Appl., 31, 3(2023).

    [315] P. Mandal, S. Sharma. Progress in plasmonic solar cell efficiency improvement: a status review. Renew. Sustain. Energy Rev., 65, 537(2016).

    [316] L. Zhou, X. Yu, J. Zhu. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement. Nano Lett., 14, 1093(2014).

    [317] H. A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater., 9, 205(2010).

    [318] M. Ihara et al. Enhancement of the absorption coefficient of cis-(NCS)(2) bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) dye in dye-sensitized solar cells by a silver island film. J. Phys. Chem. B, 101, 5153(1997).

    [319] S. D. Standridge, G. C. Schatz, J. T. Hupp. Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc., 131, 8407(2009).

    [320] Y. Li et al. Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ. Sci., 6, 2156(2013).

    [321] S. Zhang et al. Boosting the efficiency of dye-sensitized solar cells by a multifunctional composite photoanode to 14.13 %. Angew. Chem. Int. Ed., 62, e202302753(2023).

    [322] S. Pillai et al. Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101, 093105(2007).

    [323] K. Nakayama, K. Tanabe, H. A. Atwater. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett., 93, 121904(2008).

    [324] K. Ueno et al. Solid-state plasmonic solar cells. Chem. Rev., 118, 2955(2018).

    [325] R. S. Moakhar et al. Recent advances in plasmonic perovskite solar cells. Adv. Sci., 7, 1902448(2020).

    [326] S. S. Mali et al. In situ processed gold nanoparticle-embedded TiO2 nanofibers enabling plasmonic perovskite solar cells to exceed 14% conversion efficiency. Nanoscale, 8, 2664(2016).

    [327] S. Liu et al. A review on plasmonic nanostructures for efficiency enhancement of organic solar cells. Mater. Today Phys., 24, 100680(2022).

    [328] S. S. Kim et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett., 93, 073307(2008).

    [329] S. H. Liu et al. Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy Environ. Sci., 9, 898(2016).

    [330] Q. Gan, F. J. Bartoli, Z. H. Kafafi. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Adv. Mater., 25, 2385(2013).

    [331] T. Xu et al. High-performance semitransparent organic solar cells: from competing indexes of transparency and efficiency perspectives. Adv. Sci., 9, 2202150(2022).

    [332] Y. Hattori et al. Role of the metal oxide electron acceptor on gold-plasmon hot-carrier dynamics and its implication to photocatalysis and photovoltaics. ACS Appl. Nano Mater., 4, 2052(2021).

    [333] P. Reineck et al. Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J. Phys. Chem. Lett., 7, 4137(2016).

    [334] S. Mubeen et al. On the plasmonic photovoltaic. ACS Nano, 8, 6066(2014).

    [335] H.-N. Barad et al. Hot electron-based solid state TiO2 vertical bar Ag solar cells. Adv. Mater. Interfaces, 3, 1500789(2016).

    [336] Y. Park et al. Elongated lifetime and enhanced flux of hot electrons on a perovskite plasmonic nanodiode. Nano Lett., 19, 5489(2019).

    [337] Y. Park et al. Relaxation dynamics of enhanced hot-electron flow on perovskite-coupled plasmonic silver schottky nanodiodes. J. Phys. Chem. C, 125, 2575(2021).

    [338] Y. Tian et al. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell. Electrochem. Commun., 11, 1603(2009).

    [339] Y. Nishijima et al. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett., 1, 2031(2010).

    [340] X. Wu et al. Broadband plasmon photocurrent generation from Au nanoparticles/mesoporous TiO2 nanotube electrodes. Sol. Energy Mater. Sol. Cells, 138, 80(2015).

    [341] L. L. Shi et al. Status and outlook of metal-inorganic semiconductor-metal photodetectors. Laser Photonics Rev., 15, 2000401(2021).

    [342] D. A. Bandurin et al. Resonant terahertz detection using graphene plasmons. Nat. Commun., 9, 5392(2018).

    [343] Z. Y. Wang, X. X. Wang, J. F. Liu. An efficient nanophotonic hot electron solar-blind UV detector. ACS Photonics, 5, 3989(2018).

    [344] K. T. Wang et al. High-performance ultraviolet photodetector based on single- crystal integrated self-supporting 4H-SiC nanohole arrays. ACS Appl. Mater. Interfaces, 15, 23457(2023).

    [345] L. Y. Mei et al. Ultraviolet-visible-short-wavelength infrared broadband and fast-response photodetectors enabled by individual monocrystalline perovskite nanoplate. Small, 19, 2301386(2023).

    [346] Y. Lu et al. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity. Nano Energy, 47, 140(2018).

    [347] G. Wang et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater., 28, 1800339(2018).

    [348] J. Guo et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Appl. Surf. Sci., 483, 1037(2019).

    [349] H.-Y. Lan et al. Gate-tunable plasmon-enhanced photodetection in a monolayer Mos2 phototransistor with ultrahigh photoresponsivity. Nano Lett., 21, 3083(2021).

    [350] Y. Li et al. Superior plasmonic photodetectors based on au@mos2 core-shell heterostructures. ACS Nano, 11, 10321(2017).

    [351] D. Lu et al. Strain-plasmonic coupled broadband photodetector based on monolayer MoS2. Small, 18, 2107104(2022).

    [352] C. Fan et al. Wafer-scale fabrication of graphene-based plasmonic photodetector with polarization-sensitive, broadband, and enhanced response. Adv. Opt. Mater., 11, 2202860(2023).

    [353] M. W. Knight et al. Photodetection with active optical antennas. Science, 332, 702(2011).

    [354] W. Wang et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett., 15, 7440(2015).

    [355] Z. Xia et al. Solution-processed gold nanorods integrated with graphene for near-infrared photodetection via hot carrier injection. ACS Appl. Mater. Interfaces, 7, 24136(2015).

    [356] L. Wen et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction. Laser Photonics Rev., 11, 1700059(2017).

    [357] L.-X. Qian et al. Ultra-sensitive beta-Ga2O3 solar-blind photodetector with high-density Al@Al2O3 core-shell nanoplasmonic array. Adv. Opt. Mater., 10, 2102055(2022).

    [358] C. Xie et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater., 29, 1806006(2019).

    [359] K. Arora et al. Spectrally selective and highly sensitive UV photodetection with UV-A,C band specific polarity switching in silver plasmonic nanoparticle enhanced gallium oxide thin-film. Adv. Opt. Mater., 8, 2000212(2020).

    [360] J. Meng et al. Self-powered photodetector for ultralow power density UV sensing. Nano Today, 43, 101399(2022).

    [361] H. Chalabi, D. Schoen, M. L. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 14, 1374(2014).

    [362] B. Liu et al. Schottky junction made from a nanoporous Au and TiO2 film for plasmonic photodetectors. ACS Appl. Nano Mater., 6, 4619(2023).

    [363] Y. Liu et al. Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability. Appl. Surf. Sci., 481, 1127(2019).

    [364] L. B. Luo et al. The effect of plasmonic nanoparticles on the optoelectronic characteristics of CdTe nanowires. Small, 10, 2645(2014).

    [365] N. S. Rohizat et al. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS–NIR region. Sci. Rep., 11, 19688(2021).

    [366] L. Wang et al. Plasmonic silver nanosphere enhanced ZnSe nanoribbon/Si heterojunction optoelectronic devices. Nanotechnology, 27, 215202(2016).

    [367] L.-B. Luo et al. Surface plasmon-enhanced nano-photodetector for green light detection. Plasmonics, 11, 619(2016).

    [368] F.-X. Liang et al. Plasmonic hollow gold nanoparticles induced high-performance Bi2S3 nanoribbon photodetector. Nanophotonics, 6, 494(2017).

    [369] R. Lu et al. A localized surface plasmon resonance and light confinement-enhanced near-infrared light photodetector. Laser Photonics Rev., 10, 595(2016).

    [370] X. Guo et al. Efficient all-optical plasmonic modulators with atomically thin van der waals heterostructures. Adv. Mater., 32, 1907105(2020).

    [371] Y. Hu et al. Bi2Se3-functionalized metasurfaces for ultrafast all-optical switching and efficient modulation of terahertz waves. ACS Photonics, 8, 771(2021).

    [372] H. Chen et al. All-optical modulation with 2D layered materials: status and prospects. Nanophotonics, 9, 2107(2020).

    [373] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [374] G. A. Wurtz et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotech., 6, 107(2011).

    [375] L. Yan, M. Guan, S. Meng. Plasmon-induced nonlinear response of silver atomic chains. Nanoscale, 10, 8600(2018).

    [376] G. A. Wurtz et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotech., 6, 107(2011).

    [377] A. Schirato et al. All-optical reconfiguration of ultrafast dichroism in gold metasurfaces. Adv. Opt. Mater., 10, 2102549(2022).

    [378] M. Taghinejad et al. Ultrafast control of phase and polarization of light expedited by hot-electron transfer. Nano Lett., 18, 5544(2018).

    Jian Luo, Qile Wu, Lin Zhou, Weixi Lu, Wenxing Yang, Jia Zhu. Plasmon-induced hot carrier dynamics and utilization[J]. Photonics Insights, 2023, 2(4): R08
    Download Citation