[1] Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nature Photonics, 2008, 2(2): 110–115.
[2] S. Farahi, G. Montemezzani, A. A. Grabar, J. P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te,” Optics Letters, 2010, 35(11): 1798–1800.
[3] X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photonics, 2011, 5(3): 154–157.
[4] Y. M. Wang, B. Judkewitz, C. A. Di Marzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound encoded light,” Nature Communications, 2012, 3(1): 1–8.
[5] Y. Liu, C. Ma, Y. Shen, J. Shi, and L. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation,” Optica, 2017, 4(2): 280–288.
[6] G. Pang, H. Liu, P. Hou, M. Qiao, and S. Han, “Optical phase conjugation of diffused light with infinite gain by using gated two-color photorefractive crystal LiNbO3:Cu:Ce,” Applied Optics, 2018, 57(10): 2675–2678.
[7] J. Ryu, M. Jang, T. J. Eom, C. Yang, and E. Chung, “Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning,” Scientific Reports, 2016, 6(1): 1–8.
[8] I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Optics Letters, 2007, 32(16): 2309–2311.
[9] N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nature Methods, 2010, 7(2): 141–147.
[10] D. Akbulut, T. J. Huisman, E. G. Van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Optics Express, 2011, 19(5): 4017–4029.
[11] R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Optics Express, 2012, 20(15): 16532–16543.
[12] R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nature Photonics, 2015, 9(9): 563–571.
[13] P. Lai, L. Wang, J. W. Tay, and L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media,” Nature Photonics, 2015, 9(2): 126–132.
[14] H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, et al., “Recent advances in wavefront shaping techniques for biomedical applications,” Applied Physics, 2015, 15(5): 632–641.
[15] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Physical Review Letters, 2010, 104(10): 100601.
[16] H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, et al., “Measuring large optical transmission matrices of disordered media,” Physical Review Letters, 2013, 111(15): 153902.
[17] A. Goetschy and A. D. Stone, “Filtering random matrices: the effect of incomplete channel control in multiple scattering,” Physical Review Letters, 2013, 111(6): 063901.
[18] Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, et al., “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Physical Review Letters, 2013, 111(24): 243901.
[19] M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Optics Express, 2015, 23(10): 12648–12668.
[20] E. Zhang, J. Laufer, R. Pedley, and P. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Physics in Medicine & Biology, 2009, 54(4): 1035.
[21] X. Xu, S. R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” Journal of Biomedical Optics, 2010, 15(6): 066018.
[22] L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science, 2012, 335(6075): 1458–1462.
[23] Z. Chen, S. Yang, and D. Xing, “Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging,” Optics Letters, 2016, 41(7): 1636–1639.
[24] W. Song, Q. Xu, Y. Zhang, Y. Zhan, W. Zheng, and L. Song, “Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo,” Scientific Reports, 2016, 6(1): 1–8.
[25] Aftab, Cheung, Kim, Thakkar, Yeddanapudi, “Information theory & the digital revolution,” 6.933 Project History, Massachusetts Institute of Technology, SNAPES@MIT. EDU.
[26] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature, 2012, 491(7423): 232–234.
[27] O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nature Photonics, 2014, 8(10): 784–790.
[28] M. Cua, E. Zhou, and C. Yang, “Imaging moving targets through scattering media,” Optics Express, 2017, 25(4): 3935–3945.
[29] W. Yang, G. Li, and G. Situ, “Imaging through scattering media with the auxiliary of a known reference object,” Scientific Reports, 2018, 8(1): 1–7.
[30] C. Guo, J. Liu, T. Wu, L. Zhu, and X. Shao, “Tracking moving targets behind a scattering medium via speckle correlation,” Applied Optics, 2018, 57(4): 905–913.
[31] H. Liu, X. Wang, J. Gao, T. Yu, and S. Han, “Seeing through dynamics scattering media: Suppressing diffused reflection based on decorrelation time difference,” Journal of Innovative Optical Health Sciences, 2019, 12(04): 1942001.
[32] C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, et al., “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Optics Communications, 2019, 434: 203–208.
[33] X. Wang, X. Jin, J. Li, X. Lian, X. Ji, and Q. Dai, “Prior-information-free single-shot scattering imaging beyond the memory effect,” Optics Letters, 2019, 44(6): 1423–1426.
[34] M. Chen, H. Liu, Z. Liu, P. Lai, and S. Han, “Expansion of the FOV in speckle autocorrelation imaging by spatial filtering,” Optics Letters, 2019, 44(24): 5997–6000.
[35] S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Physical Review Letters, 1988, 61(7): 834.
[36] I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Physical Review Letters, 1988, 61(20): 2328.
[37] S. Schott, J. Bertolotti, J. Léger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissue,” Optics Express, 2015, 23(10): 13505–13516.
[38] J. Yang, J. Li, S. He, and L. V. Wang, “Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation,” Optica, 2019, 6(3): 250–256.
[39] H. Liu, Z. Liu, M. Chen, S. Han, and L. V. Wang, “Physical picture of the optical memory effect,” Photonics Research, 2019, 7(11): 1323–1330.
[40] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied Optics, 1982, 21(15): 2758–2769.
[41] M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” Journal of the Optical Society of America, 1983, 73(11): 1434–1441.
[42] R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Optical Engineering, 1982, 21(5): 215829.
[43] A. Walther, “The question of phase retrieval in optics,” Optica Acta: International Journal of Optics, 1963, 10(1): 41–49.
[44] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Physical Review B, 1988, 38(4): 2297.
[45] Y-P. Zhao, I. Wu, C. F. Cheng, U. Block, G. C. Wang, and T. M. Lu, “Characterization of random rough surfaces by in-plane light scattering,” Journal of Applied Physics, 1998, 84(5): 2571–2582.
[46] J. W. Goodman, “Introduction to Fourier Optics (2nd Edition),” New York: MC Graw-Hill Company Publishers, 1996: 130.