• Laser & Optoelectronics Progress
  • Vol. 57, Issue 14, 140001 (2020)
Hanyu Lü1, Jing Zou1、2、*, Jintao Zhao1, and Xiaodong Hu1、2
Author Affiliations
  • 1State Key Laboratory of Precision Testing Techniques and Instrument, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Nanchang Institute for Microtechnology of Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP57.140001 Cite this Article Set citation alerts
    Hanyu Lü, Jing Zou, Jintao Zhao, Xiaodong Hu. Review on Development of Nano-Computed Tomography Imaging Technology[J]. Laser & Optoelectronics Progress, 2020, 57(14): 140001 Copy Citation Text show less
    References

    [1] Yan G X, Liu Z F, Feng X W. Three dimensional simulation and repair of skull maxilla and dentition based on CT scanning and laser sintering technologies[J]. Chinese Journal of Lasers, 36, 2538-2542(2009).

    [2] Zhang X X, Chen X D, Shan J F et al. Calculation of optimal angiographic angle for segment of interest based on multislice computed tomography vessel analysis[J]. Chinese Journal of Lasers, 38, 1104003(2011).

    [3] Miao G, Li C F. Detection of pulmonary nodules CT images combined with two-dimensional and three-dimensional convolution neural networks[J]. Laser & Optoelectronics Progress, 55, 051006(2018).

    [4] Hounsfield G N. Computerized transverse axial scanning (tomography): Part 1. Description of system[J]. The British Journal of Radiology, 46, 1016-1022(1973).

    [5] Taguchi K, Aradate H. Algorithm for image reconstruction in multi-slice helical CT[J]. Medical Physics, 25, 550-561(1998).

    [6] Kalender W A. Thin-section three-dimensional spiral CT: is isotropic imaging possible?[J]. Radiology, 197, 578-580(1995).

    [7] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America A, 1, 612-619(1984).

    [8] Martin T, Koch A. Recent developments in X-ray imaging with micrometer spatial resolution[J]. Journal of Synchrotron Radiation, 13, 180-194(2006).

    [9] Brownlow L, Mayo S, Miller P et al. Towards 50-nanometre resolution with an SEM-hosted X-ray microscope[J]. Microscopy and Analysis, 20, 13-15(2006).

    [10] Bilderback D H, Thiel D J, Pahl R et al. X-ray applications with glass-capillary optics[J]. Journal of Synchrotron Radiation, 1, 37-42(1994).

    [11] Snigirev A, Kohn V, Snigireva I et al. A compound refractive lens for focusing high-energy X-rays[J]. Nature, 384, 49-51(1996).

    [12] Bilderback D, Hoffman S, Thiel D. Nanometer spatial resolution achieved in hard X-ray imaging and Laue diffraction experiments[J]. Science, 263, 201-203(1994).

    [13] Kamijo N, Tamura S, Suzuki Y et al. Fabrication and testing of hard X-ray sputtered-sliced zone plate[J]. Review of Scientific Instruments, 66, 2132-2134(1995).

    [14] Zhang C Z, Guo Z P, Zhang P[M]. Technology and principles of industrial CT(2009).

    [15] Kosior E, Bohic S, Suhonen H et al. Absolute zinc quantification at the sub-cellular level by combined use of hard X-ray fluorescence and phase contrast imaging techniques[J]. Journal of Physics: Conference Series, 463, 012021(2013).

    [16] Lim J, Kim H, Park S Y. Hard X-ray nanotomography beamline 7C XNI at PLS-II[J]. Journal of Synchrotron Radiation, 21, 827-831(2014).

    [17] Takeuchi A, Suzuki Y, Uesugi K. Development of scanning-imaging X-ray microscope for quantitative three-dimensional phase contrast microimaging[J]. Journal of Physics: Conference Series, 463, 012034(2013).

    [18] Takeuchi A, Uesugi K, Suzuki Y. Zernike phase-contrast X-ray microscope with pseudo-Kohler illumination generated by sectored (polygon) condenser plate[J]. Journal of Physics: Conference Series, 186, 012020(2009).

    [19] Vogt U, Reinspach J, Uhlén F et al. Diffractive optics for laboratory sources to free electron lasers[J]. Journal of Physics: Conference Series, 463, 012001(2013).

    [20] Watanabe N, Hashizume J, Goto M et al. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter[J]. Journal of Physics: Conference Series, 463, 012011(2013).

    [21] Wong J. D'Sa D, Foley M, et al. NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles[J]. Pharmaceutical Research, 31, 3085-3094(2014).

    [22] Yang Y H. Study on the applications of hard X-ray microscopy and nano-CT in cellular imaging[D]. Hefei: University of Science and Technology of China(2010).

    [23] Stock S R, Bleuet P, Laloum D et al. SEM-based system for 100nm X-ray tomography for the analysis of porous silicon[J]. Proceedings of SPIE, 9212, 92120Z(2014).

    [24] Mohacsi I, Vartiainen I, Rösner B et al. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range[J]. Scientific Reports, 7, 43624(2017).

    [25] Krüger S P, Neubauer H, Bartels M et al. Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties[J]. Journal of Synchrotron Radiation, 19, 227-236(2012).

    [26] Tao F, Wang Y D, Ren Y Q et al. Design and detection of ellipsoidal mono-capillary for X-ray nano-imaging[J]. Acta Optica Sinica, 37, 1034002(2017).

    [27] Uesugi K, Hoshino M, Yagi N. Comparison of lens- and fiber-coupled CCD detectors for X-ray computed tomography[J]. Journal of Synchrotron Radiation, 18, 217-223(2011).

    [28] Chkhalo N I, Pestov A E, Salashchenko N N et al. Sub-micrometer resolution proximity X-ray microscope with digital image registration[J]. Review of Scientific Instruments, 86, 063701(2015).

    [29] Stampanoni M, Wyss P, Abela R et al. X-ray tomographic microscopy at the Swiss Light Source[J]. Proceedings of SPIE, 4503, 42-53(2002).

    [30] Koch A, Raven C, Spanne P et al. X-ray imaging with submicrometer resolution employing transparent luminescent screens[J]. Journal of the Optical Society of America A, 15, 1940-1951(1998).

    [31] Engblom C, Langlois F et al. Interferometric characterization of rotation stages for X-ray nanotomography[J]. Review of Scientific Instruments, 88, 053703(2017).

    [33] Kim J, Lauer K, Yan H et al. Compact prototype apparatus for reducing the circle of confusion down to 40 nm for X-ray nanotomography[J]. Review of Scientific Instruments, 84, 035006(2013).

    [34] Xu W H, Lauer K, Chu Y et al. A high-precision instrument for mapping of rotational errors in rotary stages[J]. Journal of Synchrotron Radiation, 21, 1367-1369(2014).

    [35] Zhao J T, Hu X D, Zou J et al. Method for correction of rotation errors in Micro-CT System[J]. Nuclear Instruments and Methods in Physics Research Section A, 816, 149-159(2016).

    [36] Fu J, Li C, Liu Z Z. Analysis and calibration of stage axial vibration for synchrotron radiation nanoscale computed tomography[J]. Analytical and Bioanalytical Chemistry, 407, 7647-7655(2015).

    [37] Fu J, Li C, Liu Z Z. Analysis and correction of dynamic geometric misalignment for nano-scale computed tomography at BSRF[J]. PLoS One, 10, e0141682(2015).

    [38] Attwood D. Nanotomography comes of age[J]. Nature, 442, 642-643(2006).

    [39] Chao W L, Harteneck B D, Liddle J A et al. Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 435, 1210-1213(2005).

    [40] Li K N, Wojcik M J, Divan R, Microelectronics: Materials et al. 35(6): 06G901. Processing, Measurement, Phenomena(2017).

    [41] Moldovan N, Divan R, Zeng H J et al. 36(1): 01A124. Surfaces, Films(2018).

    [42] Takeuchi A, Uesugi K, Suzuki Y. Improvement of quantitative performance of imaging X-ray microscope by reduction of edge-enhancement effect[J]. Journal of Physics: Conference Series, 849, 012055(2017).

    [43] Parfeniukas K. High-aspect ratio nanofabrication for hard X-ray zone plates[D]. Stockholm: KTH Royal Institute of Technology(2018).

    [44] Takeuchi A, Uesugi K, Suzuki Y et al. Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics[J]. Journal of Synchrotron Radiation, 24, 586-594(2017).

    [45] Chen T Y, Chen Y T, Wang C L et al. Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm[J]. Optics Express, 19, 19919-19924(2011).

    [46] Markus O, Matthias B, Döring F et al. Two-dimensional sub-5-nm hard X-ray focusing with MZP[J]. Proceedings of SPIE, 8848, 884802(2013).

    [47] Osterhoff M, Eberl C, Döring F et al. Towards multi-order hard X-ray imaging with multilayer zone plates[J]. Journal of Applied Crystallography, 48, 116-124(2015).

    [48] Liu C A, Conley R. MacRander A T, et al. Depth-graded multilayers for application in transmission geometry as linear zone plates[J]. Journal of Applied Physics, 98, 113519(2005).

    [49] Kang H C, Maser J, Stephenson G B et al. Nanometer linear focusing of hard X rays by a multilayer Laue lens[J]. Physical Review Letters, 96, 127401(2006).

    [50] Koyama T, Tsuji T, Takano H et al. Development of multilayer laue lenses; (2) circular type[C]. AIP Conference Proceedings, 1365, 100-103(2011).

    [51] Mimura H, Kimura T, Yokoyama H et al. Development of an adaptive optical system for sub-10-nm focusing of synchrotron radiation hard X-rays[C]. AIP Conference Proceedings, 1365, 13-20(2011).

    [52] Huang X J, Yan H F, Nazaretski E et al. 11 nm hard X-ray focus from a large-aperture multilayer Laue lens[J]. Scientific Reports, 3, 3562(2013).

    [53] Huang X J, Conley R, Bouet N et al. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens[J]. Optics Express, 23, 12496-12507(2015).

    [54] Nazaretski E, Xu W, Bouet N et al. Development and characterization of monolithic multilayer Laue lens nanofocusing optics[J]. Applied Physics Letters, 108, 261102(2016).

    [55] Li Y L, Beck R, Huang T et al. Scatterless hybrid metal-single-crystal slit for small-angle X-ray scattering and high-resolution X-ray diffraction[J]. Journal of Applied Crystallography, 41, 1134-1139(2008).

    [56] Cai Z H, Rodrigues W, Ilinski P et al. Synchrotron X-ray microdiffraction diagnostics of multilayer optoelectronic devices[J]. Applied Physics Letters, 75, 100-102(1999).

    [57] Chon K S, Juhng S K, Yoon K H. Design study of hard X-ray tomography system to obtain a spatial resolution of 100 nm[J]. Current Applied Physics, 12, 134-140(2012).

    [58] Zeng X H, Duewer F, Feser M et al. Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes[J]. Applied Optics, 47, 2376-2381(2008).

    [59] Wang Y D, Ren Y Q, Zhou G Z et al. Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 896, 108-112(2018).

    [60] Jarre A, Fuhse C, Ollinger C et al. Two-dimensional hard X-ray beam compression by combined focusing and waveguide optics[J]. Physical Review Letters, 94, 074801(2005).

    [61] Kirkpatrick P, Baez A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 38, 766(1948).

    [62] Mimura H, Handa S, Kimura T et al. Breaking the 10 nm barrier in hard-X-ray focusing[J]. Nature Physics, 6, 122-125(2010).

    [63] Snigirev A, Kohn V, Snigireva I et al. Focusing high-energy X-rays by compound refractive lenses[J]. Applied Optics, 37, 653-662(1998).

    [64] Ladislav P N, Yury D, Vaclav J et al. X-ray imaging with compound refractive lens and microfocus X-ray tube[J]. Proceedings of SPIE, 7077, 70770H(2008).

    [65] Schroer C G, Kurapova O, Patommel J et al. Hard X-ray nanoprobe based on refractive X-ray lenses[J]. Applied Physics Letters, 87, 124103(2005).

    [66] Brancewicz M, Itou M, Sakurai Y et al. High transmission Ni compound refractive lens for high energy X-rays[J]. Review of Scientific Instruments, 87, 085106(2016).

    [67] Lengeler B, Tümmler J, Snigirev A et al. Transmission and gain of singly and doubly focusing refractive X-ray lenses[J]. Journal of Applied Physics, 84, 5855-5861(1998).

    [68] Piestrup M A, Cremer J T, Beguiristain H R et al. Two-dimensional X-ray focusing from compound lenses made of plastic[J]. Review of Scientific Instruments, 71, 4375(2000).

    [69] Aristov V, Grigoriev M, Kuznetsov S et al. X-ray refractive planar lens with minimized absorption[J]. Applied Physics Letters, 77, 4058-4060(2000).

    [70] LengelerB, Schroer CG, BennerB, et al. and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment, 2001, 467/468: 944- 950.

    [71] Aaron S, Kenneth E, Ashley T. Kinoform lenses: toward nanometer resolution[J]. Proceedings of SPIE, 6002, 600210(2005).

    [72] Karvinen P, Grolimund D, Willimann M et al. Kinoform diffractive lenses for efficient nano-focusing of hard X-rays[J]. Optics Express, 22, 16676-16685(2014).

    [73] Chen Y T, Lo T N, Chu Y S et al. Full-field hard X-ray microscopy below 30 nm: a challenging nanofabrication achievement[J]. Nanotechnology, 19, 395302(2008).

    [74] Mohacsi I, Vartiainen I, Guizar-Sicairos M et al. High resolution double-sided diffractive optics for hard X-ray microscopy[J]. Optics Express, 23, 776-786(2015).

    [75] Takemoto K, Usui K, Ohigashi T et al. Improvement of cryogenic 3-dimensional observation system of soft X-ray microscope at the SR center of Ritsumeikan University[J]. Journal of Physics: Conference Series, 463, 012009(2013).

    [76] Weitkamp T. High-resolution X-ray imaging and tomography at the ESRF beamline ID 22[C]. AIP Conference Proceedings, 507, 424-429(2000).

    [77] Chu Y S. Yi J M, de Carlo F, et al. Hard-X-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution[J]. Applied Physics Letters, 92, 103119(2008).

    [78] Takeuchi A, Uesugi K, Takano H et al. Submicrometer-resolution three-dimensional imaging with hard X-ray imaging microtomography[J]. Review of Scientific Instruments, 73, 4246-4249(2002).

    [79] Yoshio S, Takeuchi A, Terada Y et al. Development of large-field high-resolution hard X-ray imaging microscopy and microtomography with Fresnel zone plate objective[J]. Proceedings of SPIE, 8851, 885109(2013).

    [80] Pogany A. A small step to higher resolution[J]. Nature Physics, 2, 657-658(2006).

    [81] Ice G E, Budai J D. Pang J W L. The race to X-ray microbeam and nanobeam science[J]. Science, 334, 1234-1239(2011).

    [82] Kohmura Y, Awaji M, Suzuki Y et al. X-ray focusing test and X-ray imaging test by a microcapillary X-ray lens at an undulator beamline[J]. Review of Scientific Instruments, 70, 4161-4167(1999).

    [83] Schroer C G, Kuhlmann M, Hunger U T et al. Nanofocusing parabolic refractive X-ray lenses[J]. Applied Physics Letters, 82, 1485-1487(2003).

    [84] Snigireva I. Vaughan G B M, Snigirev A, et al. High-energy nanoscale-resolution X-ray microscopy based on refractive optics on a long beamline[C]. AIP Conference Proceedings, 1365, 188-191(2011).

    [85] Lengeler B, Schroer C G, Richwin M et al. A microscope for hard X-rays based on parabolic compound refractive lenses[J]. Applied Physics Letters, 74, 3924-3926(1999).

    [86] Liao K L, Hong Y L, Sheng W F. Optimized short kinoform lenses for hard X-ray nano-focusing[J]. Optics Communications, 339, 53-60(2015).

    [87] Zhong C Y. Design and application of high energy X-ray compound refractive lens[D]. Beijing: University of Chinese Academy of Sciences(2018).

    [88] Seiboth F, Wittwer F, Scholz M et al. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses[J]. Journal of Synchrotron Radiation, 25, 108-115(2018).

    [89] Kohn V G. Effective aperture of X-ray compound refractive lenses[J]. Journal of Synchrotron Radiation, 24, 609-614(2017).

    [90] Gasilov S, dos Santos Rolo T, Mittone A et al. Generalized pupil function of a compound X-ray refractive lens[J]. Optics Express, 25, 25090-25097(2017).

    [91] Huang C C, Mu B Z, Wang Z S et al. Imaging properties of a spherical compound refractive X-ray lens[C]. Proceedings of SPIE, 7360, 736006(2009).

    [92] Korytár D, Cecilia A et al. High-resolution high-efficiency X-ray imaging system based on the in-line Bragg magnifier and the Medipix detector[J]. Journal of Synchrotron Radiation, 20, 153-159(2013).

    [93] Hirano K, Yamashita Y, Takahashi Y et al. Development of variable-magnification X-ray Bragg optics[J]. Journal of Synchrotron Radiation, 22, 956-960(2015).

    [94] Švéda L, Cecilia A et al. X-ray Bragg magnifier microscope as a linear shift invariant imaging system: image formation and phase retrieval[J]. Optics Express, 22, 21508-21520(2014).

    [95] Hrivňak S. Uli n J, Mike L, et al. Single-distance phase retrieval algorithm for Bragg Magnifier microscope[J]. Optics Express, 24, 27753-27762(2016).

    [96] Stampanoni M, Borchert G, Abela R et al. Bragg magnifier: a detector for submicrometer X-ray computer tomography[J]. Journal of Applied Physics, 92, 7630-7635(2002).

    [97] Dabagov S B. Wave theory of X-ray scattering in capillary structures[J]. X-Ray Spectrometry, 32, 179-185(2003).

    [98] Feng B G. The focusing characteristics of capillary and its applications on the fluorescence imaging and full-field X-ray nano-imaging Shanghai: Shanghai Institute of Applied Physics,[D]. Chinese Academy of Sciences(2017).

    [99] Emoto T, Sato Y, Konishi Y et al. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1291-1294(2004).

    [100] Yang J, Li Y D, Wang X Y et al. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 401, 25-28(2017).

    [101] Mazuritskiy M I, Lerer A M. Spatial distribution of channeling long-wavelength X rays at the output of polycapillary structures[J]. JETP Letters, 102, 483-486(2015).

    [102] Yamanashi M, Kometani N, Tsuji K. Preliminary experiment of X-ray diffraction imaging[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 355, 272-275(2015).

    [103] Mazuritskiy M I, Lerer A M, Makhno P V. Anomalous scattering, transport, and spatial distribution of X-ray fluorescence at the exit of polycapillary structures[J]. Journal of Experimental and Theoretical Physics, 123, 942-949(2016).

    [104] Chen J P, Wang J Y, Zou J et al. Polycapillary coupled X-ray digital radiation imaging system: Feasibility analysis[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 870, 19-24(2017).

    [105] Chen Y T, Chen T Y, Yi J et al. Hard X-ray Zernike microscopy reaches 30 nm resolution[J]. Optics Letters, 36, 1269-1271(2011).

    [106] Holzner C, Feser M, Vogt S et al. Zernike phase contrast in scanning microscopy with X-rays[J]. Nature Physics, 6, 883-887(2010).

    [107] Bai B, Zhu R K, Wu S T et al. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 40, 354-358(2013).

    [108] Bailey J J. Heenan T M M, Finegan D P, et al. Laser-preparation of geometrically optimised samples for X-ray nano-CT[J]. Journal of Microscopy, 267, 384-396(2017).

    [109] Do M, Isaacson S A. McDermott G, et al. Imaging and characterizing cells using tomography[J]. Archives of Biochemistry and Biophysics, 581, 111-121(2015).

    [110] Fischer P. X-ray imaging of magnetic structures[J]. IEEE Transactions on Magnetics, 51, 1-31(2015).

    [111] Gureyev T E. Nesterets Y I, de Hoog F, et al. Duality between noise and spatial resolution in linear systems[J]. Optics Express, 22, 9087-9094(2014).

    [112] Hasegawa T, Hanada T, Yorozu A et al. Microfocus X-ray imaging of the internal geometry of brachytherapy seeds[J]. Applied Radiation and Isotopes, 86, 13-20(2014).

    [113] Huang X Z, Li N, Wang D J et al. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release[J]. Journal of Pharmaceutical and Biomedical Analysis, 112, 43-49(2015).

    [114] Kim C, Zuo Z L, Finger H et al. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs)[J]. Journal of Nanoparticle Research, 17, 126(2015).

    [115] Lim C, Yan B, Yin L L et al. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT[J]. Electrochimica Acta, 75, 279-287(2012).

    [116] Litster S, Epting W K, Wargo E A et al. Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging[J]. Fuel Cells, 13, 935-945(2013).

    [117] Vogt S, Schneider G, Steuernagel A et al. X-ray microscopic studies of the drosophila dosage compensation complex[J]. Journal of Structural Biology, 132, 123-132(2000).

    [118] Momose A, Kawamoto S, Koyama I et al. Demonstration of X-ray Talbot interferometry[J]. Japanese Journal of Applied Physics, 42, L866-L868(2003).

    [119] Hauke C, Anton G, Hellbach K et al. Enhanced reconstruction algorithm for moiré artifact suppression in Talbot-Lau X-ray imaging[J]. Physics in Medicine & Biology, 63, 135018(2018).

    [120] Wang Y L, Wang Y L, Li T et al. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band?[J]. Acta Physica Sinica, 62, 201-210(2013).

    [121] Giewekemeyer K, Thibault P, Kalbfleisch S et al. Quantitative biological imaging by ptychographic X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 529-534(2010).

    [122] Holler M, Diaz A, Guizar-Sicairos M et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution[J]. Scientific Reports, 4, 3857(2015).

    [123] Dierolf M, Menzel A, Thibault P et al. Ptychographic X-ray computed tomography at the nanoscale[J]. Nature, 467, 436-439(2010).

    [124] Kruth J P, Bartscher M, Carmignato S et al. Computed tomography for dimensional metrology[J]. CIRP Annals, 60, 821-842(2011).

    [125] Lazaro D, Legoupil S, Blokkeel G et al. Metrology of steel micro-nozzles using X-ray microtomography. [C]//Proceedings of the DIR 2007 - International Symposium on Digital industrial Radiology and Computed Tomography, 25-27(2007).

    [126] Villarraga-Gómez H, Herazo E L et al. X-ray computed tomography: from medical imaging to dimensional metrology[J]. Precision Engineering, 60, 544-569(2019).

    [127] Schmitt R, Niggemann C. Uncertainty in measurement for X-ray-computed tomography using calibrated work pieces[J]. Measurement Science and Technology, 21, 054008(2010).

    [128] Villarraga-Gómez H, Lee C, Smith S T. Dimensional metrology with X-ray CT: a comparison with CMM measurements on internal features and compliant structures[J]. Precision Engineering, 51, 291-307(2018).

    [129] Tang T X, Duan X J, Zhou Z Z et al. Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 39, 0834001(2019).

    [130] Dudak J, Karch J, Holcova K et al. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix[J]. Journal of Instrumentation, 12, C12024(2017).

    [131] Li W J. Study on the application of 3D image processing and analysis for nano-CT[D]. Hefei: University of Science and Technology of China, 20-28(2011).

    [132] Zhu P P, He Q L, Liao K L et al. -12-08(2017).

    Hanyu Lü, Jing Zou, Jintao Zhao, Xiaodong Hu. Review on Development of Nano-Computed Tomography Imaging Technology[J]. Laser & Optoelectronics Progress, 2020, 57(14): 140001
    Download Citation