• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 2, 140 (2018)
LI Huan1、2、*, YANG Cheng-Ao2、3, XIE Sheng-Wen2、3, HUANG Shu-Shan2、3, CHAI Xiao-Li2、3, ZHANG Yu2、3, WAGN Jin-Liang1, and NIU Zhi-Chuan2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.02.003 Cite this Article
    LI Huan, YANG Cheng-Ao, XIE Sheng-Wen, HUANG Shu-Shan, CHAI Xiao-Li, ZHANG Yu, WAGN Jin-Liang, NIU Zhi-Chuan. Laterally-coupled distributed feedback lasers with optimized gratings by holographic lithography etching[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 140 Copy Citation Text show less
    References

    [1] Budinova G, Salva J, Volka K. Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum [J]. Applied Spectroscopy, 1997, 51(5):631-635.

    [2] Schiff H I, Mackay G I, Bechara J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements [J]. Research on Chemical Intermediates, 1994, 20(3-5):525-556.

    [3] Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries – a review [J]. Reviews in Chemical Engineering, 2011, 23(2):65-147.

    [4] Zhang Y G, Tian Z B, Zhang X J, et al. An innovative gas sensor with on-chip reference using monolithic twin laser[J].Chinese Physics Letters, 2007, 24(10):2839-2841.

    [5] Diba A S. Widely tunable sampled grating distributed bragg reflector quantum cascade laser for gas spectroscopy applications [J]. Dissertations & Theses-Gradworks, 2015.

    [7] Briggs R M, Frez C, Ksendzov A, et al. Laterally coupled distributed-feedback GaSb-based diode lasers for atmospheric gas detection at 2 μm[J]. Lasers and Electro-Optics. IEEE, 2012:1-2.

    [8] Akiba S, Utaka K, Sakai K, et al. Distributed feedback InGaAsP/InP lasers with window region emitting at 1.5 μm range [J]. IEEE Journal of Quantum Electronics, 1983, 19(6):1052-1056.

    [9] Martin R D, Forouhar S, Keo S, et al. CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode [J]. IEEE Photonics Technology Letters, 1995, 7(3):244-246.

    [10] Apiratikul P, He L, Richardson C J K. 2μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate [J]. Applied Physics Letters, 2013, 102(23):031107.

    [11] Telkkl J, Karinen J, Viheril J, et al. Narrow-linewidth distributed feedback lasers with laterally coupled ridge-waveguide surface gratings fabricated using nanoimprint lithography [J]. Semiconductor Conference. IEEE Xplore, 2010:131-141.

    [12] Dridi K, Benhsaien A, Hall T, et al. 1.55μm laterally coupled ridge-waveguide DFB lasers with third-order surface grating [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012, 8412:84121R-84121R-6.

    [13] Rner K, Hümmer M, Benkert A, et al. Long-wavelength GaInAsSb/AlGaAsSb DFB lasers emitting near 2.6 μm [J]. Physica E: Low-dimensional Systems and Nanostructures, 2005, 30(1–2):159-163.

    [14] Martin R D, Forouhar S, Keo S, et al. InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode [J]. Electronics Letters, 1994, 30(13):1058-1060.

    [15] Chen T R, Hsin W, Chen B, et al. Wide temperature range operation of DFB Lasers at 1310 and 1490nm [J]. Semiconductor Laser Conference, 2008. Islc 2008. IEEE, International. IEEE, 2008:81-82.

    [17] Briggs R M, Frez C, Ksendzov A, et al. Laterally coupled distributed-feedback GaSb-based diode lasers for atmospheric Gas detection at 2 μm [J]. Lasers and Electro-Optics. IEEE, 2012:1-2.

    [18] Viheril J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography [J]. IEEE Photonics Technology Letters, 2016, 28(11):1233-1236.

    [19] Jang S J, Yu J S, Lee Y T. Laterally coupled DFB lasers with self-aligned metal surface grating by holographic lithography [J]. IEEE Photonics Technology Letters, 2008, 20(7):514-516.

    [20] Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers [J]. Journal of Semiconductors, 2011, 32(10):103002.

    [21] Fan Z F, Luo J S, Ye W H. Compressible Rayleigh-Taylor instability with preheat in inertial confinement fusion[J]. Chinese Physics Letters, 2007, 24(8):2308-2311.

    [22] Deng L G, Rahman M, Berg J A V D, et al. Contribution of atomic and molecular ions to dry-etch damage [J]. Applied Physics Letters, 1999, 75(2):211-213.

    [23] Rahman M. Channeling and diffusion in dry-etch damage [J]. Journal of Applied Physics, 1997, 82(5):2215-2224.

    [24] Rahman M, Deng L G, Wilkinson C D W, et al. Studies of damage in low-power reactive-ion etching of III–V semiconductors[J]. Journal of Applied Physics, 2001, 89(4):2096-2108.

    [25] Streifer W, Scifres D R, Burnham R. Coupled wave analysis of DFB and DBR lasers [J]. Quantum Electronics IEEE Journal of, 1977, 13(4):134-141.

    [26] Yang C A, Zhang Y, Liao Y P, et al. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography [J]. Chinese Physics B, 2016, 25(2):181-185.

    [27] Zhang Y G, Zheng Y L, Lin C, et al. Continuous wave performance and tunability of MBE grown 2.1μm InGaAsSb/AlGaAsSb MQW lasers[J]. Chinese Physics Letters, 2006, 23(8):2262-2265.

    [28] Reboul J R, Cerutti L, Rodriguez J B, et al. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si [J]. Applied Physics Letters, 2011, 99(12):511.

    [29] Jallipalli A, Nunna K, Kutty M N, et al. Compensation of interfacial states located inside the “buffer-free” GaSb/GaAs (001) heterojunction via δ-doping [J]. Applied Physics Letters, 2009, 95(7):683.

    LI Huan, YANG Cheng-Ao, XIE Sheng-Wen, HUANG Shu-Shan, CHAI Xiao-Li, ZHANG Yu, WAGN Jin-Liang, NIU Zhi-Chuan. Laterally-coupled distributed feedback lasers with optimized gratings by holographic lithography etching[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 140
    Download Citation