• Acta Optica Sinica
  • Vol. 37, Issue 7, 706004 (2017)
Zang Qi1、2、3, Deng Xue1、3, Cao Qun1、2、3, Gao Jing1、3, Jiao Dongdong1、3, Liu Jie1、3, Xu Guanjun1、3, Dong Ruifang1、2、3, Liu Tao1、2、3, and Zhang Shougang1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0706004 Cite this Article Set citation alerts
    Zang Qi, Deng Xue, Cao Qun, Gao Jing, Jiao Dongdong, Liu Jie, Xu Guanjun, Dong Ruifang, Liu Tao, Zhang Shougang. Ultra-Stable Optical Frequency Signal Transfer in 210 km Urban Communication Link[J]. Acta Optica Sinica, 2017, 37(7): 706004 Copy Citation Text show less
    References

    [1] Foreman S M, Holman K W, Hudson D D, et al. Remote transfer of ultrastable frequency references via fiber networks[J]. Review of Scientific Instruments, 2007, 78(2): 021101.

    [2] Sherman J A, Lemke N D, Hinkley N, et al. High-accuracy measurement of atomic polarizability in an optical lattice clock[J]. Physical Review Letters, 2012, 108(15): 153002.

    [3] Huntemann N, Okhapkin M, Lipphardt B, et al. High-accuracy optical clock based on the octupole transition in 171Yb+[J]. Physical Review Letters, 2012, 108(9): 090801.

    [4] Swallows M D, Bishof M, Lin Y G, et al. Suppression of collisional shifts in a strongly interacting lattice clock[J]. Science, 2011, 331(6020): 1043-1046.

    [5] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10-18 instability[J]. Science, 2013, 341(6151): 1215-1218.

    [6] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506(7486): 71-75.

    [7] Ushijima I, Takamoto M, Das M, et al. Cryogenic optical lattice clocks[J]. Nature Photonics, 2015, 9(3): 185-189.

    [8] Fujieda M, Gotoh T, Nakagawa F, et al. Carrier-phase-based two-way satellite time and frequency transfer[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(12): 2625-2630.

    [9] Tseng W, Lin S Y, Feng K M, et al. Improving TWSTFT short-term stability by network time transfer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(1): 161-167.

    [10] Desurvier E, Zervas M N. Erbium-doped fiber amplifiers: Principles and applications[M]. New York: Wiley-Interscience, 1994: 3-26.

    [11] Becker P C, Olsson N A, Simpson J R. Erbium-doped fiber amplifiers: Fundamentals and technology[M]. San Diego: Academic Press, 1999: 258-259.

    [12] Predehl K. A 920 km optical fiber link for frequency metrology at the 19th decimal place[D]. München: Ludwig-Maximilians-Universitt, 2012.

    [13] Droste S, Ozimek F, Udem T, et al. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Physical Review Letters, 2013, 111(11): 110801.

    [14] Chiodo N, Quintin N, Stefani F, et al. Cascaded optical fiber link using the internet network for remote clocks comparison[J]. Optics Express, 2015, 23(26): 33927-33937.

    [15] Kim J, Schnatz H, Wu D S, et al. Optical injection locking-based amplification in phase-coherent transfer of optical frequencies[J]. Optics Letters, 2015, 40(18): 4198-4201.

    [16] Calonico D, Bertacco E K, Calosso C E, et al. High-accuracy coherent optical frequency transfer over a doubled 642 km fiber link[J]. Applied Physics B, 2014, 117(3): 979-986.

    [17] Newbury N R, Williams P A, Swann W C. Coherent transfer of an optical carrier over 251 km[J]. Optics Letters, 2007, 32(21): 3056-3058.

    [18] Schediwy S W, Gozzard D, Baldwin K G H, et al. High-precision optical-frequency dissemination on branching optical-fiber networks[J]. Optics Letters, 2013, 38(15): 2893-2896.

    [19] Liu Q, Han S L, Wang J L, et al. Simultaneous frequency transfer and time synchronization over a 430 km fiber backbone network using a cascaded system[J]. Chinese Optics Letters, 2016, 14(7): 070602.

    [20] Ma C Q, Wu L F, Jiang Y Y , et al. Coherence transfer of sub hertz-linewidth laser light via an 82 km fiber link[J]. Applied Physics Letters, 2015, 107(26): 261109.

    [21] Deng X, Liu J, Jiao D D, et al. Coherent transfer of optical frequency over 112 km with instability at the 10-20 level[J]. Chinese Physics Letters, 2016, 33(11): 114202.

    [22] Zang Qi, Deng Xue, Liu Jie, et al. Optimization design for bidirectional erbium-doped fiber amplifier used in long distance optical frequency transfer link[J]. Acta Optica Sinica, 2017, 37(3): 0306006.

    [23] Cao Qun, Deng Xue, Zang Qi, et al. Two-way optical phase comparison method based on local measurement[J]. Chinese J Lasers, 2017, 44(5): 0504004.

    [24] Jiang H F. Development of ultra-stable laser sources and long-distance optical link via telecommunication networks[D]. Paris: Université Pierre et Marie Curie, 2010.

    [25] Williams P A, Swann W C, Newbury N R. High-stability transfer of an optical frequency over long fiber-optic links[J]. Journal of the Optical Society of America B, 2008, 25(8): 1284-1293.

    [26] Jiao Dongdong, Gao Jing, Liu Jie, et al. Development and application of communication band narrow linewidth lasers[J]. Acta Physica Sinica, 2015, 64(19): 190601.

    CLP Journals

    [1] Zhou Xu, Chen Faxi, Zhao Kan, Liu Tao, Zhang Shougang. Time-Delay Measurement Techniques for Time Transfer over Optical Fibers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81201

    Zang Qi, Deng Xue, Cao Qun, Gao Jing, Jiao Dongdong, Liu Jie, Xu Guanjun, Dong Ruifang, Liu Tao, Zhang Shougang. Ultra-Stable Optical Frequency Signal Transfer in 210 km Urban Communication Link[J]. Acta Optica Sinica, 2017, 37(7): 706004
    Download Citation