• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1337 (2021)
Jianjian TIAN*, Xia MA, Min WANG, Heliang YAO, Zile HUA, and Lingxia ZHANG
DOI: 10.15541/jim20210177 Cite this Article
Jianjian TIAN, Xia MA, Min WANG, Heliang YAO, Zile HUA, Lingxia ZHANG. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2021, 36(12): 1337 Copy Citation Text show less
References

[1] D LI X, M WANG S, L LI et al. Progress and perspective for in situ studies of CO2 reduction. Journal of the American Chemical Society, 142, 9567-9581(2020).

[2] Y BIRDJA Y, E PEREZ-GALLENT, M FIGUEIREDO et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 4, 732-745(2019). https://doi.org/10.1038/s41560-019-0450-y

[3] A VASILEFF, Y ZHENG, Z QIAO S. Carbon solving carbon's problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Advanced Energy Materials, 7, 1700759(2017). https://onlinelibrary.wiley.com/toc/16146840/7/21

[4] P SHAO, C YI L, M CHEN S et al. Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers. Journal of Energy Chemistry, 40, 156-170(2020). https://linkinghub.elsevier.com/retrieve/pii/S2095495618312269

[5] L ZHANG, J ZHAO Z, J GONG. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition, 56, 11326-11353(2017). http://doi.wiley.com/10.1002/anie.v56.38

[6] H MISTRY, R RESKE, H ZENG Z et al. Exceptional size- dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. Journal of the American Chemical Society, 136, 16473-16476(2014). https://pubs.acs.org/doi/10.1021/ja508879j

[7] C TYO E, S VAJDA. Catalysis by clusters with precise numbers of atoms. Nature Nanotechnology, 10, 577-588(2015). https://doi.org/10.1038/nnano.2015.140

[8] F GAO D, H ZHOU, J WANG et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. Journal of the American Chemical Society, 137, 4288-4291(2015). https://pubs.acs.org/doi/10.1021/jacs.5b00046

[9] G LIU S, P HUANG S. Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction. Applied Surface Science, 475, 20-27(2019). https://linkinghub.elsevier.com/retrieve/pii/S0169433218336006

[10] H LEE C, W KANAN M. Controlling H+vs CO2 reduction selectivity on Pb electrodes. ACS Catalysis, 5, 465-469(2014). https://pubs.acs.org/doi/10.1021/cs5017672

[11] D LI Z, D HE, X YAN X et al. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angewandte Chemie International Edition, 59, 2-8(2020). https://onlinelibrary.wiley.com/toc/15213773/59/1

[12] R RESKE, H MISTRY, F BEHAFARID et al. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. Journal of the American Chemical Society, 136, 6978-6986(2014). https://pubs.acs.org/doi/10.1021/ja500328k

[13] L LÜ K, Q SUO W, D SHAO M et al. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency. Nano Energy, 63, 103834(2019). https://linkinghub.elsevier.com/retrieve/pii/S2211285519305348

[14] M LIU, X LIU M, M WANG X et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule, 3, 1703-1718(2019). https://linkinghub.elsevier.com/retrieve/pii/S2542435119302533

[15] J WU J, C MA S, J SUN et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communication, 7, 13869(2016). https://doi.org/10.1038/ncomms13869

[16] J TIAN J, M WANG, M SHEN et al. Highly efficient and selective CO2 electro-reduction to HCOOH on Sn particle- decorated polymeric carbon nitride. ChemSusChem, 13, 6442-6448(2020).

[17] B WEN G, U LEE D, H REN B et al. Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Advanced Energy Materials, 8, 1802427(2018). http://doi.wiley.com/10.1002/aenm.v8.31

[18] X LI P, Z FU W, Y ZHUANG P et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small, 15, 1902535(2019). https://onlinelibrary.wiley.com/toc/16136829/15/40

[19] J TIAN J, X ZHANG L, M WANG et al. Remarkably enhanced H2 evolution activity of oxidized graphitic carbon nitride by an extremely facile K2CO3-activation approach. Applied Catalysis B: Environmental, 232, 322-329(2018). https://linkinghub.elsevier.com/retrieve/pii/S0926337318302844

[20] J WEN, J XIE, X CHEN et al. A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123(2017). https://linkinghub.elsevier.com/retrieve/pii/S016943321631457X

[21] Q LAI, Y YUAN W, J HUANG W et al. Sn/SnOx electrode catalyst with mesoporous structure for efficient electroreduction of CO2 to formate. Applied Surface Science, 508, 145221(2020). https://linkinghub.elsevier.com/retrieve/pii/S0169433219340383

[22] B LIU S, J XIAO, F LU X et al. Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angewandte Chemie International Edition, 58, 8499-8503(2019). https://onlinelibrary.wiley.com/toc/15213773/58/25

[23] W LUC, C COLLINS, W WANG S et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. Journal of the American Chemical Society, 139, 1885-1893(2017). https://pubs.acs.org/doi/10.1021/jacs.6b10435

[24] H BANG J, S CHOI M, A MIRZAEI et al. Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires. Sensors and Actuators B: Chemical, 274, 356-369(2018). https://linkinghub.elsevier.com/retrieve/pii/S0925400518314072

[25] Y MA, Z WANG, X XU et al. Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2. Chinese Journal of Catalysis, 38, 1956-1969(2017). https://linkinghub.elsevier.com/retrieve/pii/S1872206717629553

[26] Z CHEN, R GAO M, N DUAN et al. Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Applied Catalysis B: Environmental, 277, 119252(2020). https://linkinghub.elsevier.com/retrieve/pii/S0926337320306676

[27] N NGUYEN T, M SALEHI, Q LE et al. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catalysis, 10, 10068-10095(2020). https://pubs.acs.org/doi/10.1021/acscatal.0c02643

[28] R HE, X YUAN, F SHAO P et al. Hybridiztion of defective tin disulfide nanosheets and silver nanowires enables efficient electrochemical reduction of CO2 into formate and syngas. Small, 15, 1904882(2019). https://onlinelibrary.wiley.com/toc/16136829/15/50

Jianjian TIAN, Xia MA, Min WANG, Heliang YAO, Zile HUA, Lingxia ZHANG. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2021, 36(12): 1337
Download Citation