• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1337 (2021)
Jianjian TIAN*, Xia MA, Min WANG, Heliang YAO, Zile HUA, and Lingxia ZHANG
DOI: 10.15541/jim20210177 Cite this Article
Jianjian TIAN, Xia MA, Min WANG, Heliang YAO, Zile HUA, Lingxia ZHANG. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2021, 36(12): 1337 Copy Citation Text show less
XRD patterns of Sn-QDs/CN and CN
. XRD patterns of Sn-QDs/CN and CN
1H NMR spectrum of the cathodic electrolyte after CO2RR (a), and linear relationship between HCOOH concentration and relative peak area ratio (vs. DMSO) (b)
. 1H NMR spectrum of the cathodic electrolyte after CO2RR (a), and linear relationship between HCOOH concentration and relative peak area ratio (vs. DMSO) (b)
TEM images at different magnifications (a, b) and corresponding EDS line scanning spectra (c) of Sn-p/CN; TEM image (inset: magnified image) (d), HRTEM image (e) and Sn-QDs size distribution (f) of Sn-QDs/CN
. TEM images at different magnifications (a, b) and corresponding EDS line scanning spectra (c) of Sn-p/CN; TEM image (inset: magnified image) (d), HRTEM image (e) and Sn-QDs size distribution (f) of Sn-QDs/CN
High-resolution N1s XPS spectra of Sn-QDs and CN
. High-resolution N1s XPS spectra of Sn-QDs and CN
i-t curves of CO2RR on Sn-QDs/CN at different applied potentials (a), and Faradaic efficiencies of HCOOH, CO and H2 at different applied potentials on the Sn-QDs/CN electrode (b)
. i-t curves of CO2RR on Sn-QDs/CN at different applied potentials (a), and Faradaic efficiencies of HCOOH, CO and H2 at different applied potentials on the Sn-QDs/CN electrode (b)
High-resolution Sn3d (a) and O1s (b) XPS spectra of Sn-QDs/CN
. High-resolution Sn3d (a) and O1s (b) XPS spectra of Sn-QDs/CN
LSV curves of the Sn-QDs/CN electrode in Ar-(dotted line) and CO2-saturated (solid line) 0.1 mol·L-1 KHCO3 electrolyte at a scan rate of 30 mV·s-1 (a), and Faradaic efficiencies of HCOOH on Sn-QDs/CN and Sn-p/CN at a series of potentials (b)
. LSV curves of the Sn-QDs/CN electrode in Ar-(dotted line) and CO2-saturated (solid line) 0.1 mol·L-1 KHCO3 electrolyte at a scan rate of 30 mV·s-1 (a), and Faradaic efficiencies of HCOOH on Sn-QDs/CN and Sn-p/CN at a series of potentials (b)
Faradaic efficiencies of CO and H2 at different applied potentials on CN
. Faradaic efficiencies of CO and H2 at different applied potentials on CN
Charging current density differences plotted against scan rates (a), electrochemical impedance spectra with inset showing the corresponding equivalent circuit (b), Tafel plots for HCOOH production on Sn-QDs/CN and Sn-p/CN (c), and the stability of Sn-QDs/CN catalyst at -1.0 V for 24 h in CO2-saturated 0.1 mol·L-1 KHCO3 (d)
. Charging current density differences plotted against scan rates (a), electrochemical impedance spectra with inset showing the corresponding equivalent circuit (b), Tafel plots for HCOOH production on Sn-QDs/CN and Sn-p/CN (c), and the stability of Sn-QDs/CN catalyst at -1.0 V for 24 h in CO2-saturated 0.1 mol·L-1 KHCO3 (d)
LSV curves of Sn-p/CN and Sn-QDs/CN in CO2-saturated 0.1 mol·L-1 KHCO3 electrolyte at a scan rate of 30 mV·s-1
. LSV curves of Sn-p/CN and Sn-QDs/CN in CO2-saturated 0.1 mol·L-1 KHCO3 electrolyte at a scan rate of 30 mV·s-1
Proposed possible reaction pathway of CO2-to-HCOOH conversion on Sn-QDs/CN
. Proposed possible reaction pathway of CO2-to-HCOOH conversion on Sn-QDs/CN
ElectrocatalystElectrolytePotential /V (vs. RHE) FEHCOOH/% Current density /(mA·cm-2) Stability/hRef.
Sn-QDs/CN0.1 mol·L-1 KHCO3-1.0953.324This work
Sn quantum sheets confined in graphene 0.1 mol·L-1 NaHCO3-1.28921.150[1]
Nano-SnO2/graphene 0.1 mol·L-1 NaHCO3-1.293.610-[2]
SnO2 nanoparticles (< 5 nm) 0.1 mol·L-1 KHCO3-1.264147-[3]
SnO2 nanoparticles (~500 nm) 0.1 mol·L-1 KHCO3-1.283.57.56-[4]
SnO2 nanoparticles (100 nm) 0.5 mol·L-1 KHCO3-0.98012-[5]
SnO2 nanoparticles (8-20 nm) 0.1 mol·L-1 KHCO3-1.068215.35[6]
SnO2@N-CNW 0.5 mol·L-1 NaHCO3-0.8901320[7]
SnO2@N-rGO 0.5 mol·L-1 NaHCO3-0.88921.320[8]
SnO2/PC 0.5 mol·L-1 KHCO3-0.86922910[9]
SnO2⊃NC@EEG 0.1 mol·L-1 KHCO3-1.281.213.410[10]
SnO/C0.5 mol·L-1 KHCO3-0.867527.2-[11]
Table 0. Comparison of various Sn-based catalysts for CO2-to-HCOOH conversion
ParameterRsRctCPE-TCPE-P
Sn-QDs/CN102.6276.31.2×10-50.85
Sn-p/CN96.74336.91.1×10-50.89
Table 0. Fitted data of EIS for Sn-QDs/CN and Sn-p/CN
Jianjian TIAN, Xia MA, Min WANG, Heliang YAO, Zile HUA, Lingxia ZHANG. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH[J]. Journal of Inorganic Materials, 2021, 36(12): 1337
Download Citation