• Photonics Research
  • Vol. 8, Issue 10, 1624 (2020)
Zhenyu Zhou1, Jun Xia1,*, Jun Wu1, Chenliang Chang2..., Xi Ye3, Shuguang Li3, Bintao Du1, Hao Zhang1 and Guodong Tong1|Show fewer author(s)
Author Affiliations
  • 1Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
  • 2Department of Bioengineering, University of California, Los Angeles, California 90095, USA
  • 3Shanghai Aerospace Electronic Technology Institute, Shanghai 201109, China
  • show less
    DOI: 10.1364/PRJ.398583 Cite this Article Set citation alerts
    Zhenyu Zhou, Jun Xia, Jun Wu, Chenliang Chang, Xi Ye, Shuguang Li, Bintao Du, Hao Zhang, Guodong Tong, "Learning-based phase imaging using a low-bit-depth pattern," Photonics Res. 8, 1624 (2020) Copy Citation Text show less
    References

    [1] J. W. Goodman, R. Lawrence. Digital image formation from electronically detected holograms. Appl. Phys. Lett., 11, 77-79(1967).

    [2] E. Cuche, F. Bevilacqua, C. Depeursinge. Digital holography for quantitative phase-contrast imaging. Opt. Lett., 24, 291-293(1999).

    [3] C. Mann, L. Yu, C. Lo, M. Kim. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express, 13, 8693-8698(2005).

    [4] P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 30, 468-470(2005).

    [5] M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, P. Ferraro. Digital holography, a metrological tool for quantitative analysis: trends and future applications. Opt. Lasers Eng., 104, 32-47(2018).

    [6] M. Paturzo, P. Memmolo, A. Finizio, R. Nasanen, T. J. Naughton, P. Ferraro. Synthesis and display of dynamic holographic 3D scenes with real-world objects. Opt. Express, 18, 8806-8815(2010).

    [7] B. Javidi, T. Nomura. Securing information by use of digital holography. Opt. Lett., 25, 28-30(2000).

    [8] T. Gureyev, K. Nugent. Rapid quantitative phase imaging using the transport of intensity equation. Opt. Commun., 133, 339-346(1997).

    [9] J. C. Petruccelli, L. Tian, G. Barbastathis. The transport of intensity equation for optical path length recovery using partially coherent illumination. Opt. Express, 21, 14430-14441(2013).

    [10] S. S. Kou, L. Waller, G. Barbastathis, C. J. R. Sheppard. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt. Lett., 35, 447-449(2010).

    [11] S. Marchesini, H. Chapman, S. Hau-Riege, R. London, A. Szoke, H. He, M. Howells, H. Padmore, R. Rosen, J. Spence, U. Weierstall. Coherent X-ray diffractive imaging: applications and limitations. Opt. Express, 11, 2344-2353(2003).

    [12] A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, M. Segev. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater., 11, 455-459(2012).

    [13] R. Horisaki, Y. Ogura, M. Aino, J. Tanida. Single-shot phase imaging with a coded aperture. Opt. Lett., 39, 6466-6469(2014).

    [14] R. Horisaki, R. Egami, J. Tanida. Single-shot phase imaging with randomized light (spiral). Opt. Express, 24, 3765-3773(2016).

    [15] R. Horisaki, K. Fujii, J. Tanida. Diffusion-based single-shot diffraction tomography. Opt. Lett., 44, 1964-1967(2019).

    [16] M. Teague. Deterministic phase retrieval–a Green-function solution. J. Opt. Soc. Am., 73, 1434-1441(1983).

    [17] R. Gerchberg, W. Saxton. Practical algorithm for determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [18] J. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [19] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics, 8, 784-790(2014).

    [20] Y. Wu, M. K. Sharma, A. Veeraraghavan. WISH: wavefront imaging sensor with high resolution. Light Sci. Appl., 8, 44(2019).

    [21] J.-T. Lu, A. S. Goy, J. W. Fleischer. Nonlinear imaging using object-dependent illumination. Sci. Rep., 9, 725(2019).

    [22] S. W. Paine, J. R. Fienup. Machine learning for improved image-based wavefront sensing. Opt. Lett., 43, 1235-1238(2018).

    [23] Y. Nishizaki, M. Valdivia, R. Horisaki, K. Kitaguchi, M. Saito, J. Tanida, E. Vera. Deep learning wavefront sensing. Opt. Express, 27, 240-251(2019).

    [24] G. Ju, X. Qi, H. Ma, C. Yan. Feature-based phase retrieval wavefront sensing approach using machine learning. Opt. Express, 26, 31767-31783(2018).

    [25] Q. Xin, G. Ju, C. Zhang, S. Xu. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning. Opt. Express, 27, 26102-26119(2019).

    [26] Y. Rivenson, Y. Zhang, H. Gnaydin, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [27] Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Gunaydin, X. Lin, A. Ozcan. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 5, 704-710(2018).

    [28] K. Wang, J. Dou, Q. Kemao, J. Di, J. Zhao. Y-net: a one-to-two deep learning framework for digital holographic reconstruction. Opt. Lett., 44, 4765-4768(2019).

    [29] H. Wang, M. Lyu, G. Situ. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express, 26, 22603-22614(2018).

    [30] A. Sinha, J. Lee, S. Li, G. Barbastathis. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [31] M. J. Cherukara, Y. S. G. Nashed, R. J. Harder. Real-time coherent diffraction inversion using deep generative networks. Sci. Rep., 8, 16520(2018).

    [32] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [33] Y. Sun, Z. Xia, U. S. Kamilov. Efficient and accurate inversion of multiple scattering with deep learning. Opt. Express, 26, 14678-14688(2018).

    [34] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [35] Y. Sun, J. Shi, L. Sun, J. Fan, G. Zeng. Image reconstruction through dynamic scattering media based on deep learning. Opt. Express, 27, 16032-16046(2019).

    [36] B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 96(2018).

    [37] A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, I. Carron. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep., 4, 5552(2014).

    [38] M. Lyu, H. Wang, G. Li, S. Zheng, G. Situ. Learning-based lensless imaging through optically thick scattering media. Adv. Photon., 1, 036002(2019).

    [39] U. Kurum, P. R. Wiecha, R. French, O. L. Muskens. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express, 27, 20965-20979(2019).

    [40] H. Liu, Z. Liu, M. Chen, S. Han, L. V. Wang. Physical picture of the optical memory effect. Photon. Res., 7, 1323-1330(2019).

    [41] I. Freund, M. Rosenbluh, S. Feng. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett., 61, 2328-2331(1988).

    [42] E. Edrei, G. Scarcelli. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media. Sci. Rep., 6, 33558(2016).

    [43] L. Li, Q. Li, S. Sun, H.-Z. Lin, W.-T. Liu, P.-X. Chen. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function. Opt. Lett., 43, 1670-1673(2018).

    [44] W. Yang, G. Li, G. Situ. Imaging through scattering media with the auxiliary of a known reference object. Sci. Rep., 8, 9614(2018).

    [45] P. Berto, H. Rigneault, M. Guillon. Wavefront sensing with a thin diffuser. Opt. Lett., 42, 5117-5120(2017).

    [46] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention, PT III, 9351, 234-241(2015).

    [47] W. Zhou, A. Bovik, H. Sheikh, E. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [48] G. B. Huang, M. Ramesh, T. Berg, E. Learned-Miller. Labeled faces in the wild: a database for studying face recognition in unconstrained environments(2007).

    [49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. ImageNet: a large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 248-255(2009).

    [50] R. B. Jenkin, S. Triantaphillidou, M. A. Richardson. Effective pictorial information capacity as an image quality metric. Proc. SPIE, 6494, 64940O(2007).

    [51] P. Hoyer. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res., 5, 1457-1469(2004).

    CLP Journals

    [1] Che Liu, Wen Ming Yu, Qian Ma, Lianlin Li, Tie Jun Cui, "Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network," Photonics Res. 9, B159 (2021)

    Zhenyu Zhou, Jun Xia, Jun Wu, Chenliang Chang, Xi Ye, Shuguang Li, Bintao Du, Hao Zhang, Guodong Tong, "Learning-based phase imaging using a low-bit-depth pattern," Photonics Res. 8, 1624 (2020)
    Download Citation