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Phase imaging always deals with the problem of phase invisibility when capturing objects with existing light
sensors. However, there is a demand for multiplane full intensity measurements and iterative propagation process
or reliance on reference in most conventional approaches. In this paper, we present an end-to-end compressible
phase imaging method based on deep neural networks, which can implement phase estimation using only binary
measurements. A thin diffuser as a preprocessor is placed in front of the image sensor to implicitly encode the
incoming wavefront information into the distortion and local variation of the generated speckles. Through the
trained network, the phase profile of the object can be extracted from the discrete grains distributed in the low-bit-
depth pattern. Our experiments demonstrate the faithful reconstruction with reasonable quality utilizing a single
binary pattern and verify the high redundancy of the information in the intensity measurement for phase re-
covery. In addition to the advantages of efficiency and simplicity compared to now available imaging methods,
our model provides significant compressibility for imaging data and can therefore facilitate the low-cost detection
and efficient data transmission. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.398583

1. INTRODUCTION

Phase imaging focuses on obtaining spatial phase distribution
of objects in specific application scenarios, for instance, cell mi-
croscopic imaging in biomedicine and wavefront aberration de-
tection in atmospheric optics. Particularly, for objects that are
transparent or have uniform amplitude transmittance, recon-
structing the wavefront can visualize the spatial distribution
of effective information such as thickness and refractive index.
However, since the available light sensors can only record the
intensity of the signal, the ingenious phase recording method
and phase retrieval process from the intensity measurement are
necessary. The most typical method of recording and restoring
phase information is known as digital holography (DH) [1] or
digital holographic microscopy (DHM) [2–4], which is based
on interferometry. DH makes full use of photoelectric imaging
techniques and computer techniques, and it has steadily devel-
oped and gradually matured in the fields of medical diagnosis
[5], dynamic three-dimensional display [6], information en-
cryption [7], and so on. Nevertheless, most of the basic inter-
ferometric systems for holographic recording require the
introduction of an additional reference arm; otherwise, the
reconstruction is disturbed by twin images, and thus the optical

configuration is difficult to simplify and lacks flexibility. In con-
trast, there are several reference-free conventional phase imag-
ing methods, such as the transport of intensity equation (TIE)-
[8–10], coherent diffraction imaging (CDI)- [11,12], and com-
pressive sensing (CS)-based methods [13–15]. Among them,
TIE is simple in calculation due to its analytical solution,
but it requires multiple intensity measurements and usually
has the problem of being sensitive to the map boundaries [16].
CDI- and CS-based methods primarily implement phase esti-
mation with the so-called phase retrieval algorithm or sparsity-
based optimization algorithm. The phase retrieval iterative
algorithms widely used in optical imaging are known as the
Gerchberg–Saxton algorithm (GSA) [17] and its improved al-
gorithms [18,19]. For starting an iterative process, the intensity
of the multiplane defocused images or a single diffraction in-
tensity distribution with known a priori of the sample should be
taken [19–21]. Despite this, the conventional iterative ap-
proaches require tedious system alignment or suffer from the
inherent iteration stagnation problems. The cumbersome con-
figuration procedures and low computational efficiency there-
fore lead to defects in terms of the real-time performance and
the stability of these imaging systems.
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Deep learning, a rapidly developing artificial intelligence
technology, has shown great potential for application in various
imaging techniques, ranging from image-based wavefront sens-
ing [22–25], holographic image reconstruction [26–29], coher-
ent diffraction imaging [30,31], to inversion of multiple
scattering [32–35]. Compared with most conventional meth-
ods, artificial neural networks provide a more efficient end-to-
end solution to the inverse problem in optical imaging. For
example, the convolutional neural network (CNN) can autono-
mously and effectively eliminate the twin-image and spatial ar-
tefacts of digital holography [26] or directly reconstruct phase
targets from diffraction images [30]. According to the powerful
self-organizing ability and adaptive characteristics of deep neu-
ral networks (DNNs), it is also used to solve the problem of
phase retrieval or object detection in optical scattering
[32–36]. DNN is proved to be able to learn the nonlinear re-
lationship between the output speckle intensity pattern of the
scattering medium and the input object [34–36]. However, in
these cases, scattering is generally considered to scramble and
hinder the propagation of light, and reconstruction is only
applicable to objects with simple structures (e.g., a single digit
or letter, etc.). In the recent research on computational imaging
methods, we have seen that scattering media have excellent
natural properties that can be used for optical signal preprocess-
ing such as analog compressive sensing [37]. References [38,39]
demonstrate the harmonious combination of this precondi-
tioner and deep learning, i.e., compressive sampling with thick
scattering media and imaging with low-bit-depth or under-
sampled measurements. It is a good revelation about the di-
mensionality reduction of data through physical processes
and subsequent efficient reconstruction using the network.
Since the bandwidth required for image data transmission de-
pends on the image resolution and its bit depth, collecting and
processing low-dimensional data could reduce the cost of hard-
ware devices and improve transmission efficiency, which is es-
pecially significant for large-scale data.

In this paper, with the support of deep learning, we propose
a method for phase imaging via weak scattering, which enables
the reconstruction of the complicated object using only a single
low-bit or binary pattern. By simply placing a random phase
mask/plate in front of the image sensor to preprocess the wave-
front, a series of diffraction intensity images produced by differ-
ent incoming wavefronts are converted into highly consistent
speckle patterns. The speckle patterns are essentially composed
of many speckle grains and thus contain abundant recognizable
features. Due to spatial shift invariance, the slight spatial geo-
metric distortion of these features can be implicitly related to
the wavefront phase. Our model shows that the sparse binary
pattern can preserve the distortion of the speckle field through
partial features. After being learned by DNN, these low-bit pat-
terns containing less content could be used to almost recover
actual phase objects. Our method is totally reference free and
circumvents the twin-image problem in digital holographic
reconstruction [26] or the establishment of multiplane con-
straints as required by other conventional phase imaging meth-
ods [8–12]. More importantly, the data compressibility in our
method is verified. Unlike the performance of analog optical
compressive sensing methods that depend on the sparsity of

the object [37,38], we experimentally demonstrated the faithful
reconstruction utilizing low-bit patterns, even for phase objects
with complex structures.

2. METHOD

A. Physical Model
Generally, shift invariance means that for a system, the only
change in its response signal is the same temporal or spatial
shift that occurs in the input signal. An optical system with
an aperture is a typical spatial shift-invariant system. In the case
of paraxial approximation, slight adjustment of the incident an-
gle of the object light will produce a similar pattern in the image
space but only introduce a displacement related to the incident
angle. For a lens imaging system, shift invariance under paraxial
conditions can be expressed as

Lff �x, y�g � g�x, y� (1)

and

Lff �x − α, y − β�g � g�x − α, y − β�, (2)

where Lf·g is the point spread function (PSF), and f and g de-
note the input and response of the system, namely, the object field
and the image field. If the pattern represented by g�x, y�, on the
right side of Eq. (1), carries certain features, then g�x − α, y − β�
also completely retains these features. The only difference be-
tween the two patterns recorded by the sensor is the lateral dis-
placement caused by α and β. Further, the same phenomenon
will also occur when the lens is replaced with another phase mask,
e.g., a random phase mask [40]. As shown in Fig. 1(a), for plane
wave incidence without carrying any information, we will even-
tually observe a random speckle pattern in the image plane when
light passes through a phase mask with a Gaussian distribution.
Like the convergence of a convex lens on a plane wavefront, the
phase profile of the mask can be regarded as an inherent distortion
applied to the wavefront. Here, Eqs. (1) and (2) can also be used
to describe the shift invariance of this system.

Now, consider a nonuniform wavefront, that is, a light field
containing object information. Figure 1(b) shows the recording
of the speckle pattern generated by an object with only a local
tilt phase, where the coherent beam propagating along the z
axis passes through the phase object and illuminates the dif-
fuser. The speckle pattern T �x, y� generated by the transmitted
light field in the detection plane is viewed as the measurement
of the encoded object light information. By taking away the
object, a reference speckle pattern R�x, y� can be obtained,
whose intensity distribution comes entirely from the diffuser
without impact from the geometric deformation of the wave-
front caused by the object. The reference pattern and the
shifted pattern, formed within the shift-invariant range, allow
us to visually observe the local slight shift of speckles introduced
by the object wavefront. For a local tilt phase with angle θ, as
long as θ is within the shift-invariant range, the local intensity
distribution in T �x, y� shifted by Δs � �α, β� compared to
R�x, y� will retain the pattern feature almost identical to those
in R�x, y�, that is, T �x − α, y − β� � R�x, y�. Here, for a small
θ, we get Δs � θ · d 2, where d 2 refers to the distance from the
mask to the sensor.

Distinct from the diffraction pattern generated by the phase
object at a given distance, the speckles formed from a random
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mask can be accompanied by fixed recognizable features such as
the distribution of speckles and the shape of speckle grains [see
Fig. 1(a)]. Within the shift-invariant range, arbitrary input
wavefronts will cause distortion of the speckle field but will
not destroy the local similarity of these features of the speckles
before and after the distortion. According to the discussion
above, this phenomenon could establish an implicit relation-
ship between the spatial variation of local features in the pattern
and the phase distribution of the corresponding wavefront.
However, if the consideration is to extract the wavefront phase
from the distortion of the acquired pattern, the full intensity
measurement of the speckle field may not be necessary in
the presence of recognizable features.

Binarization can reduce the data size of the image while
highlighting the outline of the content in the image. For the
speckle pattern in our model, the speckle features associated
with geometric distortion and local variations in the raw mea-
surement can be partially preserved after binarization. From the
perspective of the ability of neural networks to extract features
and fit complex functions, the designed samples can be used to
train the network to learn the desired inference but avoid es-
tablishing a specific functional relation or mathematical oper-
ation. Our DNN is trained to directly decode the phase from

the aforementioned binary or low-bit-depth pattern containing
a small amount of content.

Additionally, as illustrated in Fig. 1(b), a commercial thin
diffuser is used in the experiment to replace the ideal phase
mask mentioned in the above physical model. This diffuser
can be thought of as a single-sided rough thin scatterer with
weak scattering events, whose shift invariance is only valid in
a limited angular range, called the “optical memory effect
range” [40–44]. For a common scattering medium, the
memory effect range is usually related to its thickness and
the sizes of the medium grains [40]. This range of the diffuser
we use will be mentioned later in the experimental setup; it is
wide enough for our imaging task.

B. Experimental Setup
The optical experimental setup for data acquisition and imag-
ing is illustrated in Fig. 2(a). The pure phase object is loaded
onto the phase-only spatial light modulator (SLM, Holoeye
PLUTO-2, 1920 × 1080, pixel pitch 8.0 μm) after being cali-
brated by the SLM response curve, first coherently illuminated
by a collimated beam from a laser source (LR−GSP−520∕
1 ∼ 40 mW, 520 nm). Then the modulated incident light
is reflected by the SLM and reaches the front surface of the

Laser

SLM

Diffuser

CAM
Lens1

POL

Lens2

BS 4-f
d1 d2

(a)

(c)(b)

Fig. 2. Experimental setup for speckle pattern acquisition.
Phase objects are loaded by the spatial light modulator. The thin
diffuser is placed at the back focal plane of the 4−f system.
(a) Designated speckle acquisition window (white dotted line box).
(b) Autocorrelation of speckle patterns at different diffraction distances
d 2 and the correlation width is ∼20 μm. (c) Cross-correlation coef-
ficients between speckle patterns corresponding to different incoming
wavefronts at distances d 2 varying from 5 to 80 mm. POL, linear
polarizer; SLM, spatial light modulator; BS, beam splitter; CAM,
camera.
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Fig. 1. (a) Beam passes through an ideal random phase mask with
negligible thickness and speckles generated by two light beams with
different incident angles. The two speckle patterns show high similar-
ity, and the speckle grains in the circles indicate the same local features.
(b) Conceptual demonstration of the optical memory effect. Placing a
phase object causes a local tilt of the incident light wavefront, which
results in a partial translation of the speckle.
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diffuser [Edmund Optics, holographic, diffusing angle
�FWHM� � 1°� 1°, 0.78 mm] with a free-space propagation
distance of d 1 � 10 mm. The camera sensor (Thorlabs,
DCC1545M, 1280 × 1024, pixel size 5.2 μm, ADC resolution
10 bit) is finally placed at a short distance of d 2 (5–60 mm)
from the rear surface of the diffuser to capture the intensity
of the transmitted light. Note that because of the difference
in pixel size between the SLM and the camera sensor, the spatial
ratio of the object plane and the imaging plane needs to be
matched, and thus we place a 4−f (f 1 � 300 mm, f 2 �
250 mm) system between the SLM and the camera and crop
only the square area of 398 × 398 pixels of the SLM and
512 × 512 pixels of the camera sensor for experimentation
[see Fig. 2(a)].

Importantly, the holographic diffuser produces weak scatter-
ing events and holds a very large memory-effect range (almost
0.3 rad as characterized by Berto et al. [45]). The autocorrela-
tion operation of the captured speckle intensity pattern is per-
formed to obtain the size grains. Figure 2(b) shows the speckle
correlation width of approximately 20 μm at different diffuser-
to-camera distances, which is well resolved by the camera and
convolution filters.

C. Architecture of the DNN
As a supervised learning model, the general architecture of the
DNN is illustrated in Fig. 3. It has a typical U-net [46] archi-
tecture and consists of an encoder and a decoder. The com-
pressed (low-bit) pattern or captured raw speckle pattern is
first put into the network. After being convolved with a 3 × 3
filter, it is encoded by successively passing through five combi-
nations of dense block and pooling layers and a separate dense
block. The image size of the encoder output is reduced with a
rate of 16 times laterally, but it carries a large number of deep
features of the input image in the longitudinal direction. Next,
the encoded feature map is magnified to the lateral size of the
original input image by a decoder consisting of five dense
blocks and upsampling convolutional layers. Since the sym-
metry of the model causes the degradation of features, in order
to improve the characterization ability of the DNN and solve
the problem of gradient disappearance, skip connections are
used to enhance the transmission of features. The final estimate
is then generated through a convolutional layer with a kernel
size of 1 × 1, which contains one channel for outputting the
phase map.

In the process of training the neural network, we use mean
squared error (MSE) and structural similarity index (SSIM)
[47] as loss functions to evaluate the performance of DNN.
The MSE and the SSIM are defined as

MSE � 1

m

Xm
i�1

�yi − ŷi�2 (3)

and

SSIM � �2hyihŷi � c1��2σyŷ � c2�
�hyi2 � hŷi2 � c1��σ2y � σ2ŷ � c2�

, (4)

respectively. Here m represents the number of input samples in
the MSE, that is, the number of elements contained in a batch;
ŷ is the output of the network, while y indicates the ground
truth. For Eq. (4), h·i performs the operation of calculating
the overall average, and the constants c1, c2, and c3 ensure
the stability of the denominator. The SSIM is a combination
of three indicators that imply luminance, contrast, and struc-
ture, which is ideal for evaluating image quality. The final ex-
pression of the loss function, combining the above two loss
functions, is defined as

L � α ·MSE� β · SSIM, (5)

where the coefficients α and β adjust the weights of the two
functions and satisfy the condition of α� β � 1. During
the simulation and experiment, we found that higher
reconstruction quality can be obtained by setting α to 0.85
and β to 0.15.

D. Network Training
For data acquisition, we use two different classes of phase ob-
jects, namely, random grayscale maps with smooth phase and
images from the Faces-LFW [48] database with complex
structure and large phase gradient. For the former, we generate
the datasets by using a bilinear interpolation method to resize
a low-resolution (5 × 5) random matrix to a large size
(398 × 398) as the phase object loaded onto the SLM, and then
we crop the corresponding area of the raw speckle pattern cap-
tured by the camera sensor [Fig. 2(a)]. Taking into account the
diffraction and diffusing angles, the size of the cropped portion
is 512 × 512 pixels, which is slightly larger than the actual size
of the phase object on the SLM. After compressing the raw
measurement into low-bit patterns with different degrees, there
are finally 7000 different pairs of images: 5000 for training,

dense block 1 1 conv & average pooling 3 3 conv 2 2 up-conv 3 3 conv & ReLU 1 1 conv

512 512
32   128

256 256
64   160

128 128
80   176

64 64
88   184

32 32
92   188 16 16

94   190

32 32
188   472

64 64
184   464

128 128
176   448

256 256
160   416

512 512
128    352    64

skip connection

Phase map
512 512

Low-bit 
Speckle pattern

512 512
speckle imaging within 

the memory-effect range

Fig. 3. Schematic diagram of the proposed method for phase imaging and the basic architecture of CNN. The input to the network is a single-
shot low-bit pattern or raw intensity measurement.

Research Article Vol. 8, No. 10 / October 2020 / Photonics Research 1627



1000 for validation, and 1000 for testing. For the latter, we
interpolate the human face image to 398 × 398 and perform
the same input image data acquisition and processing, includ-
ing 7000 training samples, 2000 validation samples, and 1000
testing samples. The entire training of the network is performed
on two GPUs (NVIDIA GeForce GTX 1080Ti) using the
Adam optimizer, and the learning rate with an initial value
of 10−3 and halved every 10 epochs is set. It takes about
2 h and 3 h for two classes of samples over a total of 30 epochs.

3. RESULTS AND DISCUSSION

A. Imaging Using Raw Measurement
Without loss of generality, the built neural network is first
trained for imaging with uncompressed measurements. Also
based on the memory effect, a method of reconstructing the
wavefront by calculating the speckle displacement vector field
through the registration algorithm (called the “Demon
Algorithm”) [45] is used as a comparison to glimpse the per-
formance improvement of using DNN. The experimental
reconstruction results of random phase and human face images
with comparative experiments are shown in Fig. 4(a) and
Fig. 4(b), respectively. We adopt SSIM to quantitatively ana-
lyze the reconstruction quality of objects. Different distances of
d 2 (set to 60, 30, 10, and 5 mm) between the diffuser and the
sensor are set in the experiment. Table 1 summarizes the

reconstruction quality of the phase object in the two methods,
where SDVF represents the method based on the speckle dis-
placement vector field, and mean value 1 and mean value 2
indicate the average values of SSIM of the phase predictions
in Fig. 4(a) and Fig. 4(b), respectively.

For pure phase objects, the first thing worth noting is that
DNN can implement accurate inversion of weak scattering
with only intensity images, which could be contrasted with
detecting amplitude objects against scattering events [32–35].
Second, the phenomenon we observed is that the distance be-
tween the detection plane and the diffuser will influence the
image quality. Both methods could achieve the best results
when d 2 is the minimum we set, but they suffer from a reduc-
tion in reconstruction accuracy when distance is increased.
However, as shown in Fig. 4, this performance degradation
seems to be more significant in the algorithm based solely
on speckle correlation than in DNN. Figure 2(c) plots the
curves of the cross-correlation coefficients between the speckle
patterns corresponding to various incoming wavefronts. The
variation in the local speckle distribution becomes more sensi-
tive to the wavefront phase gradient as the propagation distance
of d 2 increases, which could be attributed to the diffusion of
light and the superposition of adjacent speckle areas formed by
various angular spectrum components after being expanded.
Observing the speckle patterns in Fig. 4, the intensity measure-
ments formed by three different wavefronts show a high

(a)

(b)

Fig. 4. Experimental results of phase recovery on (a) random grayscale image datasets (i–iii) and (b) human face datasets (iv–vi) with different
diffraction distances d 2. The images in leftmost column of each graph block are the speckle patterns, and the phase maps in the blue and the orange
solid line boxes are estimates implemented by SDVF and DNN, respectively.
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similarity in speckle distribution and grain features when
d 2 � 5 mm, while this correlation of the measurements with
larger distances, e.g., d 2 � 30 mm and 60 mm, is destroyed,
and the overall speckle distributions corresponding to different
wavefronts can be clearly distinguished. What can be seen in
Fig. 4 is that this change in similarity of the raw speckle patterns
does not seem to seriously affect the imaging quality of the net-
work. Despite this, the high similarity of speckle patterns is
beneficial for removing redundant information, which will
be demonstrated experimentally in the next section.

B. Low-Bit Imaging
The essence of compression is to eliminate redundant parts of
data to achieve optimization of data acquisition, processing,
and storage. In our experiment, compressing the bit depth
of the pattern means discarding most of the intensity informa-
tion of the raw measurement. But indeed, in this way, we con-
firmed the redundancy of intensity information for phase
imaging in the experiment. DNN can achieve the same infer-
ence as in Section 3.A using only partial features retained from
the raw measurement. Specifically, we apply binarization and
bit depth conversion to the acquired raw measurements accord-
ing to the set intensity/grayscale thresholds. Taking into ac-
count the time-varying brightness of captured pattern result
from the unstable power of the laser and ambient light, with
the uniform illumination, the selection of the conversion
threshold for each measurement is considered to be related
to its average intensity for convenience. A 1 bit pattern is made
by setting the pixel values of the raw measurement greater than
the average intensity to 1 and the rest to 0. For the conversion
of other bit depths, we use many-to-one mapping, that is, we
multi-equalize the normalized intensity range and correspond
to the low bit value. Figure 5(a) shows the raw measurement
and its two processed low-bit patterns, which preserve the basic
shapes and distribution of speckle grains.

After training with the processed datasets, the network
shows satisfactory performance on reconstructing the object us-
ing only binary or low-bit patterns. As illustrated in Fig. 6, we
list the imaging results of the phase objects with d 2 � 5 mm
(the distance between the diffuser and the camera) and set the
reconstruction results with d 2 � 60 mm as comparison. For all
datasets, the improvement of bit depth on imaging quality is
also tested. The bar graph for the average SSIM over testing
samples with different processed bit depths is plotted in
Fig. 5(b), where the average value is obtained from a total
of 120 samples for each bit depth. The graph also compares

the performance of the neural network for the imaging of
the two types of samples. On the whole, higher reconstruction
precision is achieved on objects with smooth phase distribu-
tion, and increasing the bit depth of the datasets can more ef-
fectively improve the reconstruction quality of the objects with
complex structures.

Note the worse imaging quality at a large distance between
the diffuser and the camera sensor, as in the case of
d 2 � 60 mm in Fig. 6. Even though the diffuser used has a
very small diffusion angle (∼1°), the reconstructed image of
the object is blurred, which differs somewhat from the result
of imaging with the raw speckle measurement in Section 3.A.
The overlap of speckles owing to severe geometric distortions
will reduce the consistency of the binary patterns and tend to
cause the patterns to change randomly. It seems to force the
network to learn irregular variations, which will significantly
reduce the accuracy of reconstruction in the absence of most
of the intensity information. More specifically, the square areas
at the same position in the low-bit patterns of different samples
are enlarged and arranged in the middle column of each image
group in Fig. 6. It shows the local distribution and the effect of
pattern similarity on low-bit imaging when there is geometric
distortion in the speckle field.

Further testing is about the generalizability of our model,
which also determines whether DNN needs more classes of da-
tasets for training. Accordingly, reconstruction of objects other
than the class of the training set is performed. Figure 7 and
Table 2 show the imaging performance of the network on

Table 1. Mean Values of Structural Similarity Index
(SSIM) of DNN and SDVF on the Dataset

d 2 Method Mean Value 1 Mean Value 2

60 mm SDVF 0.9111 0.6484
DNN 0.9593 0.7746

30 mm SDVF 0.9077 0.6838
DNN 0.9720 0.7790

10 mm SDVF 0.9320 0.7701
DNN 0.9552 0.8570

5 mm SDVF 0.9299 0.8038
DNN 0.9686 0.9147

Fig. 5. (a) Raw measurement and processed patterns with different
bit depth; (b) SSIM of the reconstructions at each image bit depth.

Research Article Vol. 8, No. 10 / October 2020 / Photonics Research 1629



samples in other different classes (ImageNet [49] and random
phase) after being trained on the human face image dataset.
Additionally, in both cases of imaging with binary images
and raw measurements, experiments using diffraction patterns
for imaging are arranged to visually reflect the role of the dif-
fuser in low-bit imaging. For full bit depth, the performance of
the DNN trained with speckle patterns on the testing samples
from the learned class is almost the same as that of the DNN
trained with diffraction patterns. However, the latter seems to
be unable to well generalize the untouched classes that are quite
different from the learned classes, such as simple random phase
maps. For low bit depth, the reconstruction from the binary
diffraction pattern almost fails. The results show the reasonable
stability and generalizability of imaging with binarized speckle
patterns and the compressibility brought by the diffuser. An
unexpected result is the performance of SDVF on the testing
samples; although its reconstruction accuracy on complicated
objects is not satisfactory, it is suitable for recovering relatively
simple and smooth phase objects even with binary patterns.

In order to know more about the compressibility of our
method and how the amount of data influences the quality
of phase imaging, quantitative analysis of redundant informa-
tion is meaningful. We preliminarily use Shannon’s informa-
tion theory [50] to simply calculate the information capacity
of the image:

C � n log2 m: (6)

Here n is the dimensionality of the image data or its total num-
ber of pixels, and m represents the level or the number of values
that can be taken for each pixel. The analog-to-digital converter
(ADC) in the camera sensor used in our experiment has a res-
olution of 10-bit, which provides a total of 1024 value levels.
Therefore, the information capacity of a captured 512 × 512
single-channel speckle pattern and its binary version are
2,621,440 bits and 262,144 bits, respectively. It suggests that
our method allows the acquired patterns to store the crucial
information required for phase reconstruction with much less

Fig. 6. Experimental demonstration of phase imaging with low-bit speckle pattern. Results of reconstructing random smooth phase maps (left)
and human face images (right) via DNN with patterns of different bit depths. The images in the middle column of each graph group are enlarged
views of the areas selected by the yellow dotted box in the low-bit speckle patterns in the first column. The speckle patterns acquired at a distance of
d 2 � 60 mm show lower local similarity and correspondingly lower reconstruction accuracy than the case of d 2 � 5 mm.
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content than the raw data size and greatly saves the bandwidth
of image acquisition and transmission.

Another analysis is about data sparseness. Note that the bi-
narized speckle pattern contains a large number of zero-value
pixels, which means that the experimental image data can be
further encoded and compressed to save storage. A set of inten-
sity thresholds is used for binarization to evaluate the impact of
pattern sparseness on imaging quality. For the sake of conven-
ience, the average intensity of the measurement is specified as
the standard of the grayscale threshold (GT) and other thresh-
olds are selected at equal intervals. Figure 8(a) shows the

grayscale statistics of a speckle pattern captured by the camera
sensor. The red dotted lines in the graph indicate the grayscale
thresholds of interest, which are 0.5, 1.0 (average intensity),
1.5, 2.0, and 2.5 GT, respectively. Accordingly, Fig. 8(b) shows
the result of binarization; the adjustment of the threshold could
roughly change the distribution and amount of nonzero ele-
ments in the image. For the evaluation of pattern sparseness,
a formula based on L1 norm and L2 norm introduced in
Ref. [51] is applied:

SP�x� �
ffiffiffi
n

p
−

�P jxij
�
∕

ffiffiffiffiffiffiffiffiffiffiffiP
x2i

p
ffiffiffi
n

p
− 1

, (7)

where n is the number of elements contained in the signal x.
The calculated value is within the interval of [0,1] and becomes
larger as the signal sparseness increases. As shown in Fig. 8(b),
different grayscale thresholds lead to various sparseness of
binary patterns and apparently influence the accuracy of phase
recovery. Interestingly, our model seems to support the
reconstruction of phase objects from fairly sparse binary pat-
terns. When SP � 0.9, there are only a few nonzero elements.
Even so, reconstructed objects with slightly more complicated
structures such as human face images can be easily recognized.
However, if both the generalizability and the imaging quality of
the model need to be considered, blindly focusing on the
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Fig. 7. Generalizability testing of the trained DNN in full-bit (10 bit measurement) and low-bit (1 bit binary pattern) imaging and comparison of
the results of phase recovery under the three schemes: (i) imaging using diffraction patterns (without diffuser) via DNN; (ii) imaging using speckle
patterns (with diffuser) via DNN; (iii) imaging using speckle patterns (with diffuser) via SDVF. All the data acquisitions adopt the same experimental
configuration except for the diffuser settings. The distance between the diffuser and the camera sensor is fixed to 5 mm in both scheme (ii) and
scheme (iii).

Table 2. Mean Values of Structural Similarity Index
(SSIM) of DNN (Speckle), DNN (Diffraction) and SDVF on
Three Classes of Samples

Method Bit Depth
LFW Face
(Train) ImageNet

Random
Phase

DNN 10 bit 0.8729 0.7357 0.8816
(Diffraction) 1 bit 0.6200 0.4874 0.6628
DNN 10 bit 0.8948 0.8028 0.9297
(Speckle) 1 bit 0.7956 0.7494 0.8721

SDVF 10 bit 0.7204 0.5524 0.9281
1 bit 0.6051 0.5220 0.9234
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sparseness or the compressibility of the data may not be an ap-
propriate decision. Also in Fig. 8(b), DNN is trained on the
LFW Face dataset and used to reconstruct the image (Cat)
in ImageNet. The generalization is not ideal when the pattern
sparseness increases, and the reconstructed image becomes un-
recognizable, as most of the details are lost. A statistical graph of
reconstruction results over more testing samples is plotted in
the inset of Fig. 8(a), which provides a simple reference for
the trade-off between data compression and imaging quality.
As can be seen, the quality of phase imaging as well as the gen-
eralizability of DNN will deteriorate as the sparseness of pat-
terns increases. The appropriate intensity threshold for pattern
binarization can be set to be slightly larger or near the average
intensity of the measurement to obtain a better balance among
imaging quality, data size, and model generalizability. In fact,
the accuracy of phase recovery drops dramatically when the
sparseness of patterns tends to both extremes (SP � 0 and
SP � 1) as the features of grains are mostly destroyed.

4. CONCLUSION

We have proposed a phase imaging approach by taking a single
intensity pattern or its low-bit pattern based on deep learning.
A thin diffuser (or random phase mask/plate) with a large
memory effect range was employed as a physical encoder.
With the support of DNN, the phase information of the object
recorded in the distortion of the speckle field can then be al-
most completely extracted and restored. Due to the totally
reference-free recording of the light field and the compactness
brought by the combination of sensor and preconditioner, it
suggests that our imaging system has the potential to be easily
miniaturized compared to the existing phase imaging system
based on interferometry.

Different from other intensity-dependent methods, accurate
or redundant intensity measurements are nonessential for stable
end-to-end reconstruction in our method. The experiments of
recovering phase objects using full-bit pattern and low-bit
pattern both show reasonable reconstruction accuracy, proving
the high redundancy of the imaging data in our model.

Furthermore, the compressibility of our model is verified by
specific analysis on the information capacity and data sparsity
of low-bit imaging. It is expected that in addition to the obvious
advantages of reducing data transmission bandwidth and stor-
age, this compressibility can also be employed at the optical
acquisition side to reduce the cost of sensor hardware and
equipment.

The preconditioner can be alternative. The diffuser is used
in our model because it naturally provides abundant features for
intensity measurement. Nevertheless, this does not mean that
diffuser is the only option, for example, a well-designed grating
may be also applicable.
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