• Infrared and Laser Engineering
  • Vol. 49, Issue 11, 20200259 (2020)
Xiaoxiao Zhu1,2, Cheng Wang1,2, Xiaohuan Xi1, Sheng Nie1..., Xuebo Yang1,2 and Dong Li1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20200259 Cite this Article
    Xiaoxiao Zhu, Cheng Wang, Xiaohuan Xi, Sheng Nie, Xuebo Yang, Dong Li. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11): 20200259 Copy Citation Text show less
    References

    [1] 庞勇, Yong Pang, 李增元, Zengyuan Li, 陈博伟, Bowei Chen. Status and development of spaceborne lidar application in forestry. Aerospace Shanghai, 36, 20-27(2019).

    [2] 葛莉, Li Ge, 习晓环, Xiaohuan Xi, 王成, Cheng Wang. Research progress of ICESat-1/GLAS in lake level monitoring. Remote Sensing Technology and Application, 32, 14-19(2017).

    [3] X Wang, X Cheng, P Gong. Earth science applications of ICESat/GLAS: a review. International Journal of Remote Sensing, 32, 8837-8864(2011).

    [4] 胥喆, Zhe Xu, 舒清态, Qingtai Shu, 杨凯博, Kaibo Yang. The Progress of forestry application based on spaceborne lidar. Journal of Fujian Forestry Science and Technology, 44, 141-148(2017).

    [5] J B Abshire, X Sun, H Riris. Geoscience laser altimeter system (GLAS) on the ICESat mission: on‐orbit measurement performance. Geophysical Research Letters, 32, L21S02(2005).

    [6] R Dubayah, J B Blair, S Goetz. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, 1, 100002(2020).

    [7] 晓曲, Qu Xiao. Gaofen-7 satellite. Satellite Application, 22(2019).

    [8] T Markus, T Neumann, A Martino. The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260-273(2017).

    [9] T A Neumann, A J Martino, T Markus. The ice, cloud, and land elevation satellite-2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sensing of Environment, 233, 111325(2019).

    [10] A Neuenschwander, K Pitts. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247-259(2019).

    [11] M S Moussavi, W Abdalati, T Scambos. Applicability of an automatic surface detection approach to micro-pulse photon-counting lidar altimetry data: implications for canopy height retrieval from future ICESat-2 data. International Journal of Remote Sensing, 35, 5263-5279(2014).

    [12] M McGill, T Markus, VS Scott. The multiple altimeter beam experimental lidar (MABEL): an airborne simulator for the ICESat-2 mission. Journal of Atmospheric and Oceanic Technology, 30, 345-352(2013).

    [13] S Nie, C Wang, X Xi. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data. Optics Express, 26, A520-A540(2018).

    [14] Chen B, Pang Y. A denoising approach f detection of canopy ground from ICESat2''s airbne simulat data in Maryl, USA [C]Proceedings of the AOPC 2015: Advances in Laser Technology Applications. International Society f Optics Photonics, 2015.

    [15] Magruder L A, Wharton M E, Stout K D, et al. Noise filtering techniques f photoncounting ladar data [C]Proceedings of the Laser Radar Technology Applications XVII. International Society f Optics Photonics, 2012.

    [16] Zhang J, Kerekes J, Csatho B, et al. A clustering approach f detection of ground in micropulse photoncounting lidar altimeter data [C]Proceedings of the IEEE Geoscience Remote Sensing Symposium, IGARSS 2014, 2014.

    [17] J Huang, Y Xing, H You. Particle swarm optimization-based noise filtering algorithm for photon cloud data in forest area. Remote Sensing, 11, 980(2019).

    [18] X X Zhu, S Nie, C Wang. A noise removal algorithm based on OPTICS for photon-counting LiDAR data. IEEE Geoscience and Remote Sensing Letters(2020).

    [19] X Wang, Z Pan, C Glennie. A novel noise filtering model for photon-counting laser altimeter data. IEEE Geoscience and Remote Sensing Letters, 13, 947-951(2016).

    [20] S C Popescu, T Zhou, R Nelson. Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sensing of Environment, 208, 154-170(2018).

    [21] D Gwenzi, M A Lefsky, V P Suchdeo. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS Journal of Photogrammetry and Remote Sensing, 118, 68-82(2016).

    [22] 谢锋, F Xie, 杨贵, G Yang, 舒嵘, R Shu. An adaptive directional filter for photon counting Lidar point cloud data. Journal of Infrared and Millimeter Waves, 36, 107-113(2017).

    [23] U C Herzfeld, B W McDonald, B F Wallin. Algorithm for detection of ground and canopy cover in micropulse photon-counting Lidar altimeter data in preparation for the ICESat-2 mission. IEEE Transactions on Geoscience and Remote Sensing, 52, 2109-2125(2014).

    [24] 夏少波, Shaobo Xia, 王成, Cheng Wang, 习晓环, Xiaohuan Xi. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2. Journal of Remote Sensing, 18, 1199-1207(2014).

    [25] X Zhu, S Nie, C Wang. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting LiDAR data. Remote Sensing, 10, 1962(2018).

    [26] B Smith, H A Fricker, N Holschuh. Land ice height-retrieval algorithm for NASA's ICESat-2 photon-counting laser altimeter. Remote Sensing of Environment, 233, 111352(2019).

    [27] K M Brunt, T A Neumann, B E Smith. Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophysical Research Letters, 46, 13072-13078(2019).

    [28] K M Brunt, T A Neumann, K M Walsh. Determination of local slope on the Greenland Ice Sheet using a multibeam photon-counting Lidar in preparation for the ICESat-2 Mission. IEEE Geoscience and Remote Sensing Letters, 11, 935-939(2013).

    [29] B Smith, H A Fricker, A S Gardner. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science, 368, 1239-1242(2020).

    [30] Li T, Dawson G J, Chuter S J, et al. Mapping the antarctic grounding zone from ICESat2 laser altimetry [C]The Cryosphere Discussions, 2020.

    [31] R Kwok, T Markus, N T Kurtz. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results. Journal of Geophysical Research: Oceans, 124, 6942-6959(2019).

    [32] R Kwok, S Kacimi, T Markus. ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from operation iceBridge. Geophysical Research Letters, 46, 11228-11236(2019).

    [33] A A Petty, N T Kurtz, R Kwok. Winter Arctic sea ice thickness from ICESat-2 freeboards. Journal of Geophysical Research: Oceans, 125, e2019JC015764(2020).

    [34] R Kwok, S Kacimi, M A Webster. Arctic snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: a first examination. Journal of Geophysical Research: Oceans, 125, e2019JC016008(2020).

    [35] G Dandabathula, M Verma, S R Sitiraju. Evaluation of best-fit terrain elevation of ICESat-2 ATL08 using DGPS surveyed points. Journal of Applied Geodesy, 14, 285-293(2020).

    [36] A L Neuenschwander, L A Magruder. Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sensing, 11, 1721(2019).

    [37] C Wang, X Zhu, S Nie. Ground elevation accuracy verification of ICESat-2 data: a case study in Alaska, USA. Optics Express, 27, 38168-38179(2019).

    [38] X Zhu, C Wang, S Nie. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: a case study in Virginia and North Carolina, USA. Ecological Indicators, 114, 106287(2020).

    [39] W Li, Z Niu, R Shang. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. International Journal of Applied Earth Observation and Geoinformation, 92, 102163(2020).

    [40] L L Narine, S Popescu, A Neuenschwander. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sensing of Environment, 224, 1-11(2019).

    [41] L L Narine, S Popescu, T Zhou. Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data. Annals of Forest Research, 62, 69-86(2019).

    [42] L L Narine, S C Popescu, L Malambo. Using ICESat-2 to estimate and map forest aboveground biomass: a first example. Remote Sensing, 12, 1824(2020).

    [43] M Liu, S Popescu, L Malambo. Feasibility of burned area mapping based on ICESAT-2 photon counting data. Remote Sensing, 12, 24(2020).

    [44] C Yuan, P Gong, Y Bai. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sensing, 12, 770(2020).

    [45] G Zhang, W Chen, H Xie. Tibetan Plateau's lake level and volume changes from NASA's ICESat/ICESat-2 and Landsat missions. Geophysical Research Letters, 46, 13107-13118(2019).

    [46] N Xu, Y Ma, W Zhang. Surface-water-level changes during 2003-2019 in Australia revealed by ICESat/ICESat-2 altimetry and landsat imagery. IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2020.29(2020).

    [47] Y Ma, N Xu, J Sun. Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets. Remote Sensing of Environment, 232, 111287(2019).

    [48] Z Fair, M Flanner, K M Brunt. Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals. The Cryosphere Discussions, 10.5194/tc-2020-136(2020).

    [49] C E Parrish, L A Magruder, A L Neuenschwander. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sensing, 11, 1634(2019).

    [50] A Albright, C Glennie. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations. IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2020.29(2020).

    [51] B W Klotz, A Neuenschwander, L A Magruder. High-resolution ocean wave and wind characteristics determined by the ICESat-2 land surface algorithm. Geophysical Research Letters, 47, e2019GL085907(2020).

    [52] C Horvat, E Blanchard-Wrigglesworth, A Petty. Observing waves in sea ice with ICESat-2. Geophysical Research Letters, 47, e2020GL087629(2020).

    [53] Lu X, Hu Y, Yang Y. Ocean Subsurface study from ICESat2 mission [C]In Proceedings of Photonics & Electromagics Research SymposiumFall. PIERS 2019, 2019.

    [54] X Lu, Y Hu, Y Yang. Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sensing of Environment, 245, 111827(2020).

    CLP Journals

    [1] Xiangying E, Guangyao Dai, Songhua Wu. ICESat-2 ATL03 data preprocessing and correction method[J]. Infrared and Laser Engineering, 2021, 50(6): 20211032

    [2] Chengbin Xing, Shengsheng Gong, Xiaoliang Yu, Yixin Li. Application of Gaussian Mixture Clustering to moving surface fitting filter classification[J]. Infrared and Laser Engineering, 2021, 50(10): 20200501

    Xiaoxiao Zhu, Cheng Wang, Xiaohuan Xi, Sheng Nie, Xuebo Yang, Dong Li. Research progress of ICESat-2/ATLAS data processing and applications[J]. Infrared and Laser Engineering, 2020, 49(11): 20200259
    Download Citation