• Photonics Research
  • Vol. 9, Issue 6, B247 (2021)
Yangming Ren1、2、†, Lingxuan Zhang1、2、†, Weiqiang Wang1、2, Xinyu Wang1、2, Yufang Lei1、2, Yulong Xue1、2, Xiaochen Sun1、2、3、*, and Wenfu Zhang1、2、4、*
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3e-mail: sunxiaochen@opt.ac.cn
  • 4e-mail: wfuzhang@opt.ac.cn
  • show less
    DOI: 10.1364/PRJ.416294 Cite this Article Set citation alerts
    Yangming Ren, Lingxuan Zhang, Weiqiang Wang, Xinyu Wang, Yufang Lei, Yulong Xue, Xiaochen Sun, Wenfu Zhang. Genetic-algorithm-based deep neural networks for highly efficient photonic device design[J]. Photonics Research, 2021, 9(6): B247 Copy Citation Text show less
    References

    [1] M. J. R. Heck, H. W. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, J. E. Bowers. Hybrid silicon photonics for optical interconnects. IEEE J. Sel. Top. Quantum Electron., 17, 333-346(2011).

    [2] Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, Y. Arakawa. High-density and wide-bandwidth optical interconnects with silicon optical interposers [Invited]. Photon. Res., 2, A1-A7(2014).

    [3] Y. Li, Y. Zhang, L. Zhang, A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives. Photon. Res., 3, B10-B27(2015).

    [4] J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, M. R. Watts. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [5] X. Sun, L. Zhang, Q. Zhang, W. Zhang. Si photonics for practical LiDAR solutions. Appl. Sci., 9, 4225(2019).

    [6] C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, M. R. Watts. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett., 42, 21-24(2017).

    [7] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [8] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun., 5, 3541(2014).

    [9] K. Xu, L. Liu, X. Wen, W. Sun, N. Zhang, N. Yi, S. Sun, S. Xiao, Q. Song. Integrated photonic power divider with arbitrary power ratios. Opt. Lett., 42, 855-858(2017).

    [10] E. Khoram, X. Qian, M. Yuan, Z. Yu. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces. Opt. Express, 28, 7060-7069(2020).

    [11] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351-13367(2013).

    [12] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, E. Yablonovitch. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013).

    [13] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [14] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, J. Vučković. Analytical level set fabrication constraints for inverse design. Sci. Rep., 9, 8999(2019).

    [15] A. Y. Piggott, E. Y. Ma, L. Su, G. H. Ahn, N. V. Sapra, D. Vercruysse, A. M. Netherton, A. S. P. Khope, J. E. Bowers, J. Vučković. Inverse-designed photonics for semiconductor foundries. ACS Photon., 7, 569-575(2020).

    [16] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vucković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [17] C. Y. Kao, S. Osher, E. Yablonovitch. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B, 81, 235-244(2005).

    [18] K. Wang, X. Ren, W. Chang, L. Lu, D. Liu, M. Zhang. Inverse design of digital nanophotonic devices using the adjoint method. Photon. Res., 8, 528-533(2020).

    [19] J. C. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, J. K. S. Poon. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett., 41, 3868-3871(2016).

    [20] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, Y. Liu. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2020).

    [21] W. Li, F. Meng, Y. Chen, Y. Fan Li, X. Huang. Topology optimization of photonic and photonic crystals and metamaterials: a review. Adv. Theor. Simul., 2, 1900017(2019).

    [22] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [23] Y. Lecun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [24] B. A. Krizhevsky, I. Sutskever, G. E. Hinton. Image net classification with deep convolutional neural networks. Commun. ACM, 60, 84-90(2012).

    [25] T. Young, D. Hazarika, S. Poria, E. Cambria. Recent trends in deep learning based natural language processing. IEEE Comput. Intell. Mag., 13, 55-75(2018).

    [26] Y. Mao, Q. He, X. Zhao. Designing complex architectured materials with generative adversarial networks. Sci. Adv., 6, eaaz4169(2020).

    [27] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial Neural networks. Science, 355, 602-606(2007).

    [28] D. Liu, Y. Tan, E. Khoram, Z. Yu. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photon., 5, 1365-1369(2018).

    [29] T. Asano, S. Noda. Optimization of photonic crystal nanocavities based on deep learning. Opt. Express, 26, 32704-32717(2018).

    [30] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. Delacy, M. Tegmark, J. D. Joannopoulos, M. Soljacić. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [31] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [32] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated photonic power splitters. Sci. Rep., 9, 1368(2019).

    [33] D. Dai, J. E. Bowers. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express, 19, 10940-10949(2011).

    [34] Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, W. N. Ye. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Opt. Express, 22, 17458-17465(2014).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    [2] Alessia Suprano, Danilo Zia, Emanuele Polino, Taira Giordani, Luca Innocenti, Alessandro Ferraro, Mauro Paternostro, Nicolò Spagnolo, Fabio Sciarrino. Dynamical learning of a photonics quantum-state engineering process[J]. Advanced Photonics, 2021, 3(6): 066002

    Yangming Ren, Lingxuan Zhang, Weiqiang Wang, Xinyu Wang, Yufang Lei, Yulong Xue, Xiaochen Sun, Wenfu Zhang. Genetic-algorithm-based deep neural networks for highly efficient photonic device design[J]. Photonics Research, 2021, 9(6): B247
    Download Citation