• Photonics Research
  • Vol. 11, Issue 8, 1390 (2023)
Yongqiang Sun1、2、†, Yunfei Xu1、2、†, Jinchuan Zhang1、4、*, Fengmin Chen1、5、*, Junqi Liu1、2, Shuman Liu1、2, Quanyong Lu3, Ning Zhuo1, Lijun Wang1、2, Fengqi Liu1、2, and Shenqiang Zhai1、6、*
Author Affiliations
  • 1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 4e-mail: zhangjinchuan@semi.ac.cn
  • 5e-mail: chengfm@semi.ac.cn
  • 6e-mail: zsqlzsmbj@semi.ac.cn
  • show less
    DOI: 10.1364/PRJ.484520 Cite this Article Set citation alerts
    Yongqiang Sun, Yunfei Xu, Jinchuan Zhang, Fengmin Chen, Junqi Liu, Shuman Liu, Quanyong Lu, Ning Zhuo, Lijun Wang, Fengqi Liu, Shenqiang Zhai. High-power distributed feedback lasers based on InP corrugated sidewalls at λ∼2 μm[J]. Photonics Research, 2023, 11(8): 1390 Copy Citation Text show less
    References

    [1] Y. Xie, W. Liu, W. Deng, H. Wu, W. Wang, Y. Si, X. Zhan, C. Gao, X.-K. Chen, H. Wu, J. Peng, Y. Cao. Bright short-wavelength infrared organic light-emitting devices. Nat. Photonics, 16, 752-761(2022).

    [2] A. Godard. Infrared (2–12  μm) solid-state laser sources: a review. C. R. Phys., 8, 1100-1128(2007).

    [3] W. Lei, C. Jagadish. Lasers and photodetectors for mid-infrared 2–3  μm applications. J. Appl. Phys., 104, 091101(2008).

    [4] J. H. Miller, Y. A. Bakhirkin, T. Ajtai, F. K. Tittel, C. J. Hill, R. Q. Yang. Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser. Appl. Phys. B, 85, 391-396(2006).

    [5] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, K. A. Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343-346(2005).

    [6] Y. Sun, K. Yang, J. Liu, J. Zhang, N. Zhuo, J. Liu, S. Liu, L. Wang, F. Liu, S. Zhai. High sensitivity and fast detection system for sensing of explosives and hazardous materials. Sens. Actuators B, 360, 131640(2022).

    [7] D. Wang, N. Zhuo, Y. Zhao, F. Cheng, S. Niu, J. Zhang, S. Zhai, L. Wang, S. Liu, F. Liu, Z. Wang. Improved performance of InP-based 2.1 μm InGaAsSb quantum well lasers using Sb as a surfactant. Appl. Phys. Lett., 113, 251101(2018).

    [8] C. Ning, R. X. Sun, S. M. Liu, J. C. Zhang, N. Zhuo, J. Q. Liu, L. J. Wang, S. Q. Zhai, F.-Q. Liu, Z.-G. Wang. GaSb surface grating distributed feedback interband cascade laser emitting at 3.25  μm. Opt. Express, 30, 29007-29014(2022).

    [9] C. A. Yang, S.-W. Xie, Y. Zhang, J.-M. Shang, S.-S. Huang, Y. Yuan, F.-H. Shao, Y. Zhang, Y. Q. Xu, Z. C. Niu. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2  μm. Appl. Phys. Lett., 114, 021102(2019).

    [10] F. Xie, M. Stocker, J. Pham, F. Towner, K. Shen, J. Wang, K. Lascola. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls. Appl. Phys. Lett., 112, 131102(2018).

    [11] J. Scheuermann, R. Weih, M. von Edlinger, L. Nähle, M. Fischer, J. Koeth, M. Kamp, S. Höfling. Single-mode interband cascade lasers emitting below 2.8  μm. Appl. Phys. Lett., 106, 161103(2015).

    [12] R. Weih, L. Nähle, S. Höfling, J. Koeth, M. Kamp. Single mode interband cascade lasers based on lateral metal gratings. Appl. Phys. Lett., 105, 071111(2014).

    [13] J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, C. Storey. Single-mode 2.4  μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing. Appl. Phys. Lett., 95, 041104(2009).

    [14] P. Apiratikul, L. He, C. J. K. Richardson. 2  μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate. Appl. Phys. Lett., 102, 231101(2013).

    [15] R. M. Briggs, C. Frez, M. Bagheri, C. E. Borgentun, J. A. Gupta, M. F. Witinski, J. G. Anderson, S. Forouhar. Single-mode 2.65  μm InGaAsSb/AlInGaAsSb laterally coupled distributed-feedback diode lasers for atmospheric gas detection. Opt. Express, 21, 1317-1323(2013).

    [16] M. Bagheri, C. Frez, B. Kelly, J. A. Gupta, S. Forouhar. High output power, fibre-coupled distributed feedback lasers operating near 2.05  μm wavelength range. Electron. Lett., 49, 1552-1553(2013).

    [17] S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, A. Ksendzov. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength. Appl. Phys. Lett., 100, 031107(2012).

    [18] A. Salhi, D. Barat, D. Romanini, Y. Rouillard, A. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, A. Garnache. Single-frequency Sb-based distributed-feedback lasers emitting at 2.3  μm above room temperature for application in tunable diode laser absorption spectroscopy. Appl. Opt., 45, 4957-4965(2006).

    [19] K. Rößner, M. Hümmer, A. Benkert, A. Forchel. Long-wavelength GaInAsSb/AlGaAsSb DFB lasers emitting near 2.6  μm. Phys. E, 30, 159-163(2005).

    [20] C. Abellan, W. Amaya, D. Domenech, P. Muñoz, J. Capmany, S. Longhi, M. W. Mitchell, V. Pruneri. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica, 3, 989-994(2016).

    [21] J. Midkiff, K. M. Yoo, J.-D. Shin, H. Dalir, M. H. Teimourpour, R. T. Chen. Optical phased array beam steering in the mid-infrared on an InP-based platform. Optica, 7, 1544-1547(2020).

    [22] D. B. Wang, J. C. Zhang, S. S. Li, F. M. Cheng, Z. H. Gu, Y. X. Zhu, N. Zhuo, S. Q. Zhai, L. J. Wang, J. Q. Liu, S. M. Liu, F. Q. Liu, Z. G. Wang. InP-based surface-emitting distributed feedback lasers operating at 2004  nm. IEEE Photon. Technol. Lett., 31, 1701-1704(2019).

    [23] M. Razeghi, R. Blondeau, M. Krakowski, B. de Cremoux, J. P. Duchemin, F. Lozes, M. Martinot, M. A. Bensoussan. cw phase-locked array Ga0.25In0.75As0.5P0.5-InP high power semiconductor laser grown by low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett., 50, 230-232(1987).

    [24] T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, Y. Kondo. 2.33  μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47 as multiple-quantum wells on InP substrates. IEEE Photon. Technol. Lett., 20, 1045-1047(2008).

    [25] M. Mitsuhara, M. Ogasawara, M. Oishi, H. Sugiura, K. Kasaya. 2.05-μm wavelength InGaAs-InGaAs distributed-feedback multiquantum-well lasers with 10-mW output power. IEEE Photon. Technol. Lett., 11, 33-35(1999).

    [26] F. Xu, S. Luo, F. Gao, H. M. Ji, Z. R. Lv, X. G. Yang, T. Yang. 2004-nm Ridge-waveguide distributed feedback lasers with InGaAs multi-quantum wells. IEEE Photon. Technol. Lett., 28, 2257-2260(2016).

    [27] D. Wang, J. Zhang, C. Hou, Y. Zhao, F. Cheng, X. Jia, S. Zhai, N. Zhuo, J. Liu, F. Liu, Z. Wang. High performance continuous-wave InP-based 2.1  μm superluminescent diode with InGaAsSb quantum well and cavity structure suppression. Appl. Phys. Lett., 113, 161107(2018).

    [28] T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, Y. Kondo. 2.1-μm-wavelength InGaAs multiple-quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant. IEEE J. Sel. Top. Quantum Electron., 13, 1079-1082(2007).

    [29] D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel. InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3  μm. Appl. Phys. Lett., 90, 021108(2007).

    [30] C. A. Wang, B. Schwarz, D. F. Siriani, L. J. Missaggia, M. K. Connors, T. S. Mansuripur, D. R. Calawa, D. McNulty, M. Nickerson, J. P. Donnelly, K. Creedon, F. Capasso. MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: impact of growth and material quality on laser performance. IEEE J. Sel. Top. Quantum Electron., 23, 1200413(2017).

    [31] C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. Abell, I. Vurgaftman, J. R. Meyer. Corrugated-sidewall interband cascade lasers with single-mode midwave-infrared emission at room temperature. Appl. Phys. Lett., 90, 021108(2007).

    [32] H. Kogelnik, C. V. Shank. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys., 43, 2327-2335(1972).

    [33] R. J. Noll, S. H. Macomber. Analysis of grating surface emitting lasers. IEEE J. Quantum Electron., 26, 456-466(1990).

    [34] D. Y. Yao, J. C. Zhang, F.-Q. Liu, N. Zhuo, F.-L. Yan, L.-J. Wang, J.-Q. Liu, Z.-G. Wang. Surface emitting quantum cascade lasers operating in continuous-wave mode above 70°C at λ ∼ 4.6  μm. Appl. Phys. Lett., 103, 041121(2013).

    [35] J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, E. H. Linfield. Surface emitting terahertz quantum cascade laser with a double-metal waveguide. Opt. Express, 14, 11672-11680(2006).

    [36] S. Kumar, B. S. Williams, Q. Qin, A. M. Lee, Q. Hu, J. L. Reno. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. Opt. Express, 15, 113-128(2007).

    [37] T. Fei, S. Zhai, J. Zhang, N. Zhuo, J. Liu, L. Wang, S. Liu, Z. Jia, K. Li, Y. Sun, K. Guo, F. Liu, Z. Wang. High power λ ∼ 8.5  μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408  K. J. Semicond., 42, 112301(2021).

    [38] Y. Q. Sun, J. C. Zhang, F. M. Cheng, C. Ning, N. Zhuo, S. Q. Zhai, F. Q. Liu, J. Q. Liu, S. M. Liu, W. Z. Guo. Beam steering characteristics in high-power quantum-cascade lasers emitting at λ ∼ 4.6  μm. Chin. Phys. B, 30, 034211(2021).

    [39] Y. Sun, R. Yin, J. Zhang, J. Liu, T. Fei, K. Li, K. Guo, Z. Jia, S. Liu, Q. Lu, N. Zhuo, L. Wang, F. Liu, S. Zhai. High-performance quantum cascade lasers at λ ∼ 9  μm grown by MOCVD. Opt. Express, 30, 37272-37280(2022).

    Yongqiang Sun, Yunfei Xu, Jinchuan Zhang, Fengmin Chen, Junqi Liu, Shuman Liu, Quanyong Lu, Ning Zhuo, Lijun Wang, Fengqi Liu, Shenqiang Zhai. High-power distributed feedback lasers based on InP corrugated sidewalls at λ∼2 μm[J]. Photonics Research, 2023, 11(8): 1390
    Download Citation