• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20211111 (2022)
Hongtao Lin, Boshu Sun, Hui Ma, Chuyu Zhong, and Zezhao Ju
Author Affiliations
  • College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310063, China
  • show less
    DOI: 10.3788/IRLA20211111 Cite this Article
    Hongtao Lin, Boshu Sun, Hui Ma, Chuyu Zhong, Zezhao Ju. Review of mid-infrared on-chip integrated photonics (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20211111 Copy Citation Text show less
    References

    [1] Pile D, Hiuchi N, Won R, et al. Extending opptunities[J]. Nature Photonics, 2012, 6(7): 407.

    [2] Sef R A, Emelett S J, Buchwald W R. Silicon waveguided components f the longwave infrared region[J]. Journal of Optics A: Pure Applied Optics, 2006, 8(10): 840848.

    [3] Hu J, Meyer J, Ridson K, et al. Feature issue introduction: IR photonic materials[J]. Optical Materials Express, 2013, 3(9): 1571.

    [4] Lin H, Song Y, Huang Y, et al. Chalcogenide glassongraphene photonics[J]. Nature Photonics, 2017, 11(12): 798805.

    [5] Vlasov Y A, O''boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 6569.

    [6] Malik A, Dwivedi S, Lschoot L V, et al. GeonSi GeonSOI thermooptic phase shifters f the infrared[J]. Optics Express, 2014, 22(23): 2847928488.

    [7] Zou Y, Chakravarty S, Chung C J, et al. Miniature infrared thermooptic switch with photonic crystal waveguide based silicononsapphire Mach–Zehnder interferometers [C]Proceedings of the Optical Interconnects XVI, 2016.

    [8] Nedeljkovic M, Stankovic S, Mitchell C J, et al. infrared thermooptic modulats in Sol [J]. IEEE Photonics Technology Letters, 2014, 26(13): 13521355.

    [9] Campenhout J V, Green W M J, Assefa S, et al. Integrated NiSi waveguide heaters f CMOScompatible silicon thermooptic devices[J]. Optics Letters, 2010, 35(7): 10131015.

    [10] Shen L, Huang M, Zheng S, et al. Highperfmance silicon 2×2 thermooptic switch f the 2μm wavelength b[J]. IEEE Photonics Journal, 2019, 11(4): 16.

    [11] Shen W, Du J, Xu K, et al. Onchip ive dualmode switch f 2μm wavelength highspeed optical interconnection[J]. IEEE Photonics Technology Letters, 2021, 33(10): 483486.

    [12] Zhong C, Ma H, Sun C, et al. Fast thermooptical modulats with dopedsilicon heaters operating at 2 μm[J]. Optics Express, 2021, 29(15): 2350823516.

    [13] Sturm J C, Reaves C M. Fundamental mechanisms doping effects in silicon infrared absption f temperature measurement by infrared transmission[J]. Rapid Thermal Related Processing Technique, 1990, 1393: 309315.

    [14] Isenberg J, Warta W. Free carrier absption in heavily doped silicon layers[J]. Applied Physics Letters, 2004, 84(13): 22652267.

    [15] Sch P E. Optical absption in heavily doped silicon[J]. Physical Review B, 1981, 23(10): 55315536.

    [16] Weigel P O, Savanier M, Derose C T, et al. Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics[J]. Scientific Repts, 2016, 6: 22301.

    [17] Rabiei P, Ma J, Khan S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 2557325581.

    [18] Chiles J, Fathpour S. infrared integrated waveguide modulats based on silicononlithiumniobate photonics[J]. Optica, 2014, 1(5): 350355.

    [19] Jacobsen R S, ersen K N, Bel P I, et al. Strained silicon as a new electrooptic material[J]. Nature, 2006, 441(7090): 199202.

    [20] Chmielak B, Waldow M, Matheisen C, et al. Pockels effect based fully integrated, strained silicon electrooptic modulat[J]. Optics Express, 2011, 19(18): 1721217219.

    [21] Mishra J, Mckenna T P, Ng E, et al. infrared nonlinear optics in thinfilm lithium niobate on sapphire[J]. Optica, 2021, 8(6): 921924.

    [22] Nedeljkovic M, Sef R, Mashanovich G Z. Freecarrier electrefraction electroabsption modulation predictions f silicon over the 114μm infrared wavelength range[J]. IEEE Photonics Journal, 2011, 3(6): 11711180.

    [23] Nedeljkovic M, Sef R, Mashanovich G Z. Predictions of freecarrier electroabsption electrefraction in Germanium[J]. IEEE Photonics Journal, 2015, 7(3): 114.

    [24] Van Camp M A, Assefa S, Gill D M, et al. Demonstration of electrooptic modulation at 2165 nm using a silicon MachZehnder interferometer[J]. Optics Express, 2012, 20(27): 2800928016.

    [25] Thomson D J, Shen L, Ackert J J, et al. Optical detection modulation at 2 μm2.5 μm in silicon[J]. Optics Express, 2014, 22(9): 1082510830.

    [26] Nedeljkovic M, Littlejohns C G, Khokhar A Z, et al. Silicononinsulat freecarrier injection modulats f the infrared[J]. Optics Letters, 2019, 44(4): 915918.

    [27] Cao W, Hagan D, Thomson D J, et al. Highspeed silicon modulats f the 2 μm wavelength b[J]. Optica, 2018, 5(9): 10551062.

    [28] Li T, Nedeljkovic M, Hattasan N, et al. GeonSi modulats operating at infrared wavelengths up to 8 μm[J]. Photonics Research, 2019, 7(8): 828836.

    [29] Li T, Nedeljkovic M, Hattasan N, et al. infrared GeonSi electroabsption modulat [C]Proceedings of the IEEE International Conference on Group IV Photonics, 2017.

    [30] Shen L, Healy N, Mitchell C J, et al. infrared alloptical modulation in lowloss germaniumonsilicon waveguides[J]. Optics Letters, 2015, 40(2): 268271.

    [31] Sef R A, Sun G, Cheng H H. FranzKeldysh electroabsption modulation in germaniumtin alloys[J]. Journal of Applied Physics, 2012, 111(12): 1995719965.

    [32] Zhang Q, Liu Y, Yan J, et al. Theetical investigation of tensile strained GeSn waveguide with Si3N4 liner stress f infrared detect modulat applications[J]. Optics Express, 2015, 23(6): 79247932.

    [33] Lin C, Grassi R, Low T, et al. Multilayer black phosphus as a versatile infrared electrooptic material[J]. Nano Letters, 2016, 16(3): 16831689.

    [34] Whitney W S, Sherrott M C, Jariwala D, et al. Field effect optoelectronic modulation of quantumconfined carriers in black phosphus[J]. Nano Letters, 2017, 17(1): 7884.

    [35] Peng R, Khaliji K, Youngblood N, et al. infrared electrooptic modulation in fewlayer black phosphus[J]. Nano Letters, 2017, 17(10): 63156320.

    [36] Dalir H, Xia Y, Wang Y, et al. A thermal broadb graphene optical modulat with 35 GHz speed[J]. ACS Photonics, 2016, 3(9): 15641568.

    [37] Hanson G W. Dyadic Green''s functions guided surface waves f a surface conductivity model of graphene[J]. Journal of Applied Physics, 2008, 103(6): 19912.

    [38] Lin H T, Luo Z Q, Gu T, et al. infrared integrated photonics on silicon: A perspective[J]. Nanophotonics, 2018, 7(2): 393420.

    [39] Dereniak E L, Beman G D. Infrared Detects Systems [M]. New Yk: John Wiley & Sons, 1996.

    [40] Rogalski A. Recent progress in infrared detect technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136154.

    [41] Rogalski A. Progress in focal plane array technologies[J]. Progress in Quantum Electronics, 2012, 36(23): 342473.

    [42] Kinch M A. StateoftheArt Infrared Detect Technology [M]. US: SPIE, 2014.

    [43] Ahn D. Intrachip clock signal distribution via sibased optical interconnect[D]. Cambridge: Massachusetts Institute of Technology, 2007.

    [44] Hattasan N, Gassenq A, Cerutti L, et al. Heterogeneous integration of GaInAsSb pin photodiodes on a silicononinsulat waveguide circuit[J]. IEEE Photonics Technology Letters, 2011, 23(23): 17601762.

    [45] Gassenq A, Hattasan N, Cerutti L, et al. Study of evanescentlycoupled gratingassisted GaInAsSb photodiodes integrated on a silicon photonic chip[J]. Optics Express, 2012, 20(11): 1166511672.

    [46] Ryckeboer E, Gassenq A, Muneeb M, et al. Silicononinsulat spectrometers with integrated GaInAsSb photodiodes f wideb spectroscopy from 1510 to 2300 nm[J]. Optics Express, 2013, 21(5): 61016108.

    [47] Wang R, Sprengel S, Muneeb M, et al. 2 μm wavelength range InPbased typeII quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits[J]. Opt Express, 2015, 23(20): 2683426841.

    [48] Wang R, Muneeb M, Sprengel S, et al. IIIVonsilicon 2micromwavelengthrange wavelength demultiplexers with heterogeneously integrated InPbased typeII photodetects[J]. Opt Express, 2016, 24(8): 84808490.

    [49] Muneeb M, Vasiliev A, Ruocco A, et al. IIIVonsilicon integrated micro spectrometer f the 3 μm wavelength range[J]. Opt Express, 2016, 24(9): 94659472.

    [50] Han Z, Singh V, Kita D, et al. Onchip chalcogenide glass waveguideintegrated infrared PbTe detects[J]. Applied Physics Letters, 2016, 109(7): 279308.

    [51] Wang X, Cheng Z, Xu K, et al. Highresponsivity graphenesiliconheterostructure waveguide photodetects[J]. Nature Photonics, 2013, 7(11): 888891.

    [52] Ma Y, Dong B, Wei J, et al. High‐responsivity ‐infrared black phosphus slow light waveguide photodetect[J]. Advanced Optical Materials, 2020, 8(13): 2000337.

    [53] Souhan B, Grote R R, Chen C P, et al. Si (+)implanted Siwire waveguide photodetects f the infrared[J]. Opt Express, 2014, 22(22): 2741527424.

    [54] Grote R R, Souhan B, Ophir N, et al. Extrinsic photodiodes f integrated infrared silicon photonics[J]. Optica, 2014, 1(4): 264267.

    [55] Souhan B, Chen C, Lu M, et al. Ar+implanted Siwaveguide photodiodes f infrared detection[J]. Photonics, 2016, 3(3): 46.

    [56] Ackert J J, Thomson D J, Shen L, et al. Highspeed detection at two micrometres with monolithic silicon photodiodes[J]. Nature Photonics, 2015, 9(6): 393396.

    [57] Fain R, Miller S A, Yu M. CMOScompatible Infrared Silicon Detect [C]CLEO: Science Innovations Optical Society of America, 2017.

    [58] Wang J, Hu J, Becla P, et al. Resonantcavityenhanced infrared photodetect on a silicon platfm[J]. Opt Express, 2010, 18(12): 1289012896.

    [59] Wang J, Zens T, Hu J, et al. Monolithically integrated, resonantcavityenhanced dualb infrared photodetect on silicon[J]. Applied Physics Letters, 2012, 100(21): 211106.

    [60] Heves E, Ozturk C, Ozguz V, et al. Solutionbased PbS photodiodes, integrable on ROIC, f SWIR detect applications[J]. IEEE Electron Device Letters, 2013, 34(5): 662664.

    [61] Wang J, Hu J, Sun X, et al. Structural, electrical, optical properties of thermally evapated nanocrystalline PbTe films[J]. Journal of Applied Physics, 2008, 104(5): 053707.

    [62] Wang J, Hu J, Becla P, et al. Roomtemperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study[J]. Journal of Applied Physics, 2011, 110(8): 1426.

    [63] Hu J, Tarasov V, Carlie N, et al. SiCMOScompatible liftoff fabrication of lowloss planar chalcogenide waveguides[J]. Optics Express, 2007, 15(19): 1179811807.

    [64] Wang Jianfei. Resonantcavityenhanced multispectral infrared photodetects f monolithic integration on silicon[D]. Cambridge: Massachusetts Institute of Technology, 2011.

    [65] Li H, Brouillet J, Salas A, et al. Low temperature growth of high crystallinity GeSn on amphous layers f advanced optoelectronics[J]. Optical Materials Express, 2013, 3(9): 13851396.

    [66] Lhuillier E, Keuleyan S, Zolotavin P, et al. infrared HgTeAs2S3 field effect transists photodetects[J]. Adv Mater, 2013, 25(1): 137141.

    [67] Simmons C B, Akey A J, Mailoa J P, et al. Enhancing the infrared photesponse of silicon by controlling the fermi level location within an impurity b[J]. Advanced Functional Materials, 2014, 24(19): 28522858.

    [68] Berencen Y, Prucnal S, Liu F, et al. Roomtemperature shtwavelength infrared Si photodetect[J]. Sci Rep, 2017, 7: 43688.

    [69] Lin H, Luo Z, Gu T, et al. infrared integrated photonics on silicon: A perspective[J]. Nanophotonics, 2017, 7(2): 0085.

    [70] Youngblood N, Chen C, Koester S J, et al. Waveguideintegrated black phosphus photodetect with high responsivity low dark current[J]. Nature Photonics, 2015, 9(4): 247252.

    [71] Liu B, Kopf M, Abbas A N, et al. Black arsenicphosphus: Layered anisotropic infrared semiconducts with highly tunable compositions properties[J]. Adv Mater, 2015, 27(30): 44234429.

    [72] Deckoff J S, Wang Y, Lin H, et al. Tellurene: A multifunctional material f infrared optoelectronics[J]. ACS Photonics, 2019, 6(7): 16321638.

    [73] Tong L, Huang X, Wang P, et al. Stable infrared polarization imaging based on quasi2 D tellurium at room temperature[J]. Nat Commun, 2020, 11(1): 2308.

    [74] Li T, Guo W, Ma L, et al. Epitaxial growth of waferscale molybdenum disulfide semiconduct single crystals on sapphire[J]. Nat Nanotechnol, 2021, 16(11): 12011207.

    [75] Huang Y, Tien E K, Gao S, et al. Electrical signaltonoise ratio improvement in indirect detection of IR signals by wavelength conversion in silicononsapphire waveguides[J]. Applied Physics Letters, 2011, 99(18): 537.

    [76] Liu X, Kuyken B, Roelkens G, et al. Bridging the infraredtotelecom gap with silicon nanophotonic spectral translation[J]. Nature Photonics, 2012, 6(10): 667671.

    [77] Chen W, Roelli P, Hu H, et al. Continuouswave frequency upconversion with a molecular optomechanical nanocavity [J]. Science, 2021, 374(6572): 12641267.

    CLP Journals

    [1] Lipeng Xia, Yuheng Liu, Peiji Zhou, Yi Zou. Advances in mid-infrared integrated photonic sensing system (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20220104

    Hongtao Lin, Boshu Sun, Hui Ma, Chuyu Zhong, Zezhao Ju. Review of mid-infrared on-chip integrated photonics (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20211111
    Download Citation